Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Divergence
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Tensor field === Let {{math|'''A'''}} be continuously differentiable second-order [[tensor field]] defined as follows: <math display="block">\mathbf{A} = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix}</math> the divergence in cartesian coordinate system is a first-order tensor field{{sfn|Gurtin|1981|p=30}} and can be defined in two ways:<ref>{{ cite web |title=1.14 Tensor Calculus I: Tensor Fields |work=Foundations of Continuum Mechanics |url=http://homepages.engineering.auckland.ac.nz/~pkel015/SolidMechanicsBooks/Part_III/Chapter_1_Vectors_Tensors/Vectors_Tensors_14_Tensor_Calculus.pdf |archive-url=https://web.archive.org/web/20130108133336/http://homepages.engineering.auckland.ac.nz/~pkel015/SolidMechanicsBooks/Part_III/Chapter_1_Vectors_Tensors/Vectors_Tensors_14_Tensor_Calculus.pdf |archive-date=2013-01-08 | url-status=live }}</ref> <math display="block">\operatorname{div} (\mathbf{A}) = \frac{\partial A_{ik}}{\partial x_k}~\mathbf{e}_i = A_{ik,k}~\mathbf{e}_i = \begin{bmatrix} \dfrac{\partial A_{11}}{\partial x_1} +\dfrac{\partial A_{12}}{\partial x_2} +\dfrac{\partial A_{13}}{\partial x_3} \\ \dfrac{\partial A_{21}}{\partial x_1} +\dfrac{\partial A_{22}}{\partial x_2} +\dfrac{\partial A_{23}}{\partial x_3} \\ \dfrac{\partial A_{31}}{\partial x_1} +\dfrac{\partial A_{32}}{\partial x_2} +\dfrac{\partial A_{33}}{\partial x_3} \end{bmatrix}</math> and<ref> {{cite book |author=William M. Deen |title=Introduction to Chemical Engineering Fluid Mechanics |publisher= Cambridge University Press |date=2016 |page=133 |isbn=978-1-107-12377-9 |url=https://books.google.com/books?id=H1CeDAAAQBAJ&q=cauchy+momentum+asymmetric&pg=PA146 }}</ref><ref> {{cite book |author=Tasos C. Papanastasiou |author2=Georgios C. Georgiou |author3=Andreas N. Alexandrou |title=Viscous Fluid Flow |date=2000 |page=66,68 |publisher=CRC Press |isbn=0-8493-1606-5 |url=https://www.mobt3ath.com/uplode/book/book-46462.pdf |archive-url=https://web.archive.org/web/20200220125401/https://www.mobt3ath.com/uplode/book/book-46462.pdf |archive-date=2020-02-20 |url-status=live }}</ref><ref> {{cite web |author=Adam Powell |title=The Navier-Stokes Equations |date=12 April 2010 | url=http://texmex.mit.edu/pub/emanuel/CLASS/12.340/navier-stokes(2).pdf }}</ref> <math display="block"> \nabla \cdot \mathbf A = \frac{\partial A_{ki}}{\partial x_k} ~\mathbf{e}_i = A_{ki,k}~\mathbf{e}_i = \begin{bmatrix} \dfrac{\partial A_{11}}{\partial x_1} + \dfrac{\partial A_{21}}{\partial x_2} + \dfrac{\partial A_{31}}{\partial x_3} \\ \dfrac{\partial A_{12}}{\partial x_1} + \dfrac{\partial A_{22}}{\partial x_2} + \dfrac{\partial A_{32}}{\partial x_3} \\ \dfrac{\partial A_{13}}{\partial x_1} + \dfrac{\partial A_{23}}{\partial x_2} + \dfrac{\partial A_{33}}{\partial x_3} \\ \end{bmatrix} </math> We have <math display="block">\operatorname{div} {\left(\mathbf{A}^\mathsf{T}\right)} = \nabla \cdot \mathbf A</math> If tensor is symmetric {{math|1=''A''<sub>''ij''</sub> = ''A''<sub>''ji''</sub>}} then {{nowrap|<math>\operatorname{div} (\mathbf{A}) = \nabla \cdot \mathbf A</math>.}} Because of this, often in the literature the two definitions (and symbols {{math|div}} and <math>\nabla \cdot</math>) are used interchangeably (especially in mechanics equations where tensor symmetry is assumed). Expressions of <math>\nabla\cdot\mathbf A</math> in cylindrical and spherical coordinates are given in the article [[del in cylindrical and spherical coordinates]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)