Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Divergence theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Corollaries== By replacing {{math|'''F'''}} in the divergence theorem with specific forms, other useful identities can be derived (cf. [[vector identities]]).<ref name=spiegel>{{cite book |author1=M. R. Spiegel |author2=S. Lipschutz |author3=D. Spellman | title = Vector Analysis | edition = 2nd | series = Schaum's Outlines | publisher = McGraw Hill | location = USA | year = 2009 | isbn = 978-0-07-161545-7 }}</ref> * With <math>\mathbf{F}\rightarrow \mathbf{F}g</math> for a scalar function {{mvar|g}} and a vector field {{math|'''F'''}}, ::{{oiint | preintegral = <math>\iiint_V\left[\mathbf{F}\cdot \left(\nabla g\right) + g \left(\nabla\cdot \mathbf{F}\right)\right] \mathrm{d}V=</math> | intsubscpt = <math>\scriptstyle S</math> | integrand = <math>g\mathbf{F} \cdot \mathbf{n} \mathrm{d}S.</math> }} :A special case of this is <math>\mathbf{F} = \nabla f</math>, in which case the theorem is the basis for [[Green's identities]]. * With <math>\mathbf{F}\rightarrow \mathbf{F}\times \mathbf{G}</math> for two vector fields {{math|'''F'''}} and {{math|'''G'''}}, where <math>\times</math> denotes a cross product, ::{{oiint | preintegral = <math> \iiint_V \nabla \cdot \left( \mathbf{F} \times \mathbf{G}\right) \mathrm{d}V = \iiint_V \left[\mathbf{G}\cdot\left(\nabla\times\mathbf{F}\right) - \mathbf{F}\cdot \left( \nabla\times\mathbf{G}\right)\right]\, \mathrm{d}V =</math> | intsubscpt = <math>\scriptstyle S</math> | integrand = <math>(\mathbf F\times\mathbf{G}) \cdot \mathbf{n} \mathrm{d}S.</math> }} * With <math>\mathbf{F}\rightarrow \mathbf{F}\cdot \mathbf{G}</math> for two vector fields {{math|'''F'''}} and {{math|'''G'''}}, where <math>\cdot </math> denotes a [[dot product]], ::{{oiint | preintegral = <math>\iiint_V \nabla \left( \mathbf{F} \cdot \mathbf{G}\right) \mathrm{d}V = \iiint_V \left[\left(\nabla \mathbf{G}\right) \cdot \mathbf{F} + \left( \nabla \mathbf{F}\right) \cdot \mathbf{G} \right]\, \mathrm{d}V =</math> | intsubscpt = <math>\scriptstyle S</math> | integrand = <math>(\mathbf{F} \cdot \mathbf{G}) \mathbf{n} \mathrm{d}S.</math> }} * With <math>\mathbf{F}\rightarrow f\mathbf{c}</math> for a scalar function {{math| ''f'' }} and vector field '''c''':<ref name=mathworld>[http://mathworld.wolfram.com/DivergenceTheorem.html MathWorld]</ref> ::{{oiint | preintegral = <math>\iiint_V \mathbf{c} \cdot \nabla f \, \mathrm{d}V =</math> | intsubscpt = <math>\scriptstyle S</math> | integrand = <math>(\mathbf{c} f) \cdot \mathbf{n} \mathrm{d}S - \iiint_V f (\nabla \cdot \mathbf{c})\, \mathrm{d}V.</math> }} :The last term on the right vanishes for constant <math>\mathbf{c}</math> or any divergence free (solenoidal) vector field, e.g. Incompressible flows without sources or sinks such as phase change or chemical reactions etc. In particular, taking <math>\mathbf{c}</math> to be constant: ::{{oiint | preintegral = <math>\iiint_V \nabla f \, \mathrm{d}V =</math> | intsubscpt = <math>\scriptstyle S</math> | integrand = <math>f\mathbf{n} \mathrm{d}S.</math> }} * With <math>\mathbf{F}\rightarrow \mathbf{c}\times\mathbf{F}</math> for vector field {{math|'''F'''}} and constant vector '''c''':<ref name=mathworld/> ::{{oiint | preintegral = <math>\iiint_V\mathbf{c} \cdot (\nabla\times\mathbf{F}) \, \mathrm{d}V =</math> | intsubscpt = <math>\scriptstyle S</math> | integrand = <math> (\mathbf{F} \times \mathbf{c}) \cdot \mathbf{n} \mathrm{d}S.</math> }} : By reordering the [[triple product]] on the right hand side and taking out the constant vector of the integral, ::{{oiint | preintegral = <math> \iiint_V (\nabla \times\mathbf{F}) \, \mathrm{d}V \cdot \mathbf{c} = </math> | intsubscpt = <math> \scriptstyle S</math> | integrand = <math> (\mathrm{d}\mathbf{S} \times \mathbf{F}) \cdot \mathbf{c}. </math> }} : Hence, ::{{oiint | preintegral = <math> \iiint_V (\nabla \times\mathbf{F}) \, \mathrm{d}V = </math> | intsubscpt = <math> \scriptstyle S</math> | integrand = <math> \mathbf{n} \times \mathbf{F} \mathrm{d}S. </math> }}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)