Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Diving weighting system
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Trim=== {{main article|Diver trim}} [[File:Diver swimming with head up trim.png|thumb|Diver trimmed with weight far towards the feet: The static moments of buoyancy and weight cause the feet to rotate downwards, and the thrust from finning is then also directed downwards]] [[File:Diver trimmed level.png|thumb|Diver with weight and centre of buoyancy aligned for level trim: The static moments of buoyancy and weight keep the diver horizontal, and fin thrust can be aligned with direction of motion for best efficiency]] Trim is the diver's attitude in the water, in terms of balance and alignment with the direction of motion. Optimum trim depends on the task at hand. For recreational divers this is usually swimming horizontally or observing the environment without making contact with benthic organisms.<ref name="CMASISATxManual" /> Ascent and descent at neutral buoyancy can be controlled well in horizontal or head-up trim, and descent can be most energy efficient head down, if the diver can effectively equalise the ears in this position. Freediving descents are usually head down, as the diver is usually buoyant at the start of the dive, and must fin downwards. Professional divers usually have work to do at the bottom, often in a fixed location, which is usually easier in upright trim, and some diving equipment is more comfortable and safer to use when relatively upright. Accurately controlled trim reduces horizontal swimming effort, as it reduces the sectional area of the diver passing through the water. A slight head down trim is recommended to reduce downward directed fin thrust during finning, and this reduces [[silting]] and fin impact with the bottom.<ref name="fund2006-35-37" /> Trim weighting is mainly of importance to the free-swimming diver, and within this category is used extensively by scuba divers to allow the diver to remain horizontal in the water without effort. This ability is of great importance for both convenience and safety, and also reduces the environmental impact of divers on fragile benthic communities.<ref name="Hammerton 2014" /> The free-swimming diver may need to trim erect or inverted at times, but in general, a horizontal trim has advantages both for reduction of drag when swimming horizontally, and for observing the bottom. A horizontal trim allows the diver to direct propulsive thrust from the fins directly to the rear, which minimises disturbance of sediments on the bottom, and reduces the risk of striking delicate benthic organisms with the fins. A stable horizontal trim requires that diver's [[centre of gravity]] is directly below the centre of buoyancy (the [[centroid]]). Small errors can be compensated fairly easily, but large offsets may make it necessary for the diver to constantly exert significant effort towards maintaining the desired attitude, if it is actually possible.<ref name="CMASISATxManual" /><ref name="fund2006-33-35" /> The position of the centre of buoyancy is largely beyond the control of the diver, though some control of suit volume is possible, the cylinder(s) may be shifted in the harness by a small amount, and the volume distribution of the buoyancy compensator has a large influence when inflated. Most of the control of trim available to the diver is in the positioning of ballast weights. The main ballast weights therefore should be placed as far as possible to provide an approximately neutral trim, which is usually possible by wearing the weights around the waist or just above the hips on a weight belt, or in weight pockets provided in the buoyancy compensator jacket or harness for this purpose. Fine tuning of trim can be done by placing smaller weights along the length of the diver to bring the centre of gravity to the desired position. There are several ways this can be done.<ref name="McCafferty and Seery 2014" /> Ankle weights provide a large lever arm for a small amount of weight and are very effective at correcting head-down trim problems, but the addition of mass to the feet increases the work of propulsion significantly. This may not be noticed on a relaxed dive, where there is no need to swim far or fast, but if there is an emergency and the diver needs to swim hard, ankle weights will be a significant handicap, particularly if the diver is marginally fit for the conditions. Tank bottom weights provide a much shorter lever arm, so need to be a much larger proportion of the total ballast, but do not interfere with propulsive efficiency the way ankle weights do. There are not really any other convenient places below the weight belt to add trim weights, so the most effective option is to carry the main weights as low as necessary, by using a suitable harness or integrated weight pocket buoyancy compensator which actually allows the weights to be placed correctly, so there is no need for longitudinal trim correction. A less common problem is found when rebreathers have a counterlung towards the top of the torso. In this case there may be a need to attach weights near the counterlung. This is usually not a problem, and weight pockets for this purpose are often built into the rebreather harness or casing, and if necessary weights can be attached to the harness shoulder straps.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)