Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Domain theory
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Bases of domains === The previous thoughts raise another question: is it possible to guarantee that all elements of a domain can be obtained as a limit of much simpler elements? This is quite relevant in practice, since we cannot compute infinite objects but we may still hope to approximate them arbitrarily closely. More generally, we would like to restrict to a certain subset of elements as being sufficient for getting all other elements as least upper bounds. Hence, one defines a '''base''' of a poset ''P'' as being a subset ''B'' of ''P'', such that, for each ''x'' in ''P'', the set of elements in ''B'' that are way below ''x'' contains a directed set with supremum ''x''. The poset ''P'' is a '''continuous poset''' if it has some base. Especially, ''P'' itself is a base in this situation. In many applications, one restricts to continuous (d)cpos as a main object of study. Finally, an even stronger restriction on a partially ordered set is given by requiring the existence of a base of ''finite'' elements. Such a poset is called '''[[algebraic poset|algebraic]]'''. From the viewpoint of denotational semantics, algebraic posets are particularly well-behaved, since they allow for the approximation of all elements even when restricting to finite ones. As remarked before, not every finite element is "finite" in a classical sense and it may well be that the finite elements constitute an [[uncountable]] set. In some cases, however, the base for a poset is [[countable]]. In this case, one speaks of an '''Ο-continuous''' poset. Accordingly, if the countable base consists entirely of finite elements, we obtain an order that is '''Ο-algebraic'''.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)