Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Elastic collision
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Relativistic derivation using hyperbolic functions=== Using the so-called ''parameter of velocity'' <math>s</math> (usually called the [[rapidity]]), <math display="block">\frac{v}{c}=\tanh(s),</math> we get <math display="block">\sqrt{1-\frac{v^2}{c^2}}=\operatorname{sech}(s).</math> Relativistic energy and momentum are expressed as follows: <math display="block">\begin{align} E &= \frac{mc^2}{\sqrt{1-\frac{v^2}{c^2}}} = m c^2 \cosh(s) \\ p &= \frac{mv}{\sqrt{1-\frac{v^2}{c^2}}}=m c \sinh(s) \end{align}</math> Equations sum of energy and momentum colliding masses <math>m_1</math> and <math>m_2,</math> (velocities <math>v_1, v_2, u_1, u_2</math> correspond to the velocity parameters <math>s_1, s_2, s_3, s_4</math>), after dividing by adequate power <math>c</math> are as follows: <math display="block">\begin{align} m_1 \cosh(s_1)+m_2 \cosh(s_2) &= m_1 \cosh(s_3)+m_2 \cosh(s_4) \\ m_1 \sinh(s_1)+m_2 \sinh(s_2) &= m_1 \sinh(s_3)+m_2 \sinh(s_4) \end{align}</math> and dependent equation, the sum of above equations: <math display="block">m_1 e^{s_1}+m_2 e^{s_2}=m_1 e^{s_3}+m_2 e^{s_4}</math> subtract squares both sides equations "momentum" from "energy" and use the identity <math display="inline">\cosh^2(s)-\sinh^2(s)=1,</math> after simplifying we get: <math display="block">2 m_1 m_2 (\cosh(s_1) \cosh(s_2)-\sinh(s_2) \sinh(s_1)) = 2 m_1 m_2 (\cosh(s_3) \cosh(s_4)-\sinh(s_4) \sinh(s_3))</math> for non-zero mass, using the hyperbolic trigonometric identity <math display="inline">\cosh(a-b)=\cosh(a)\cosh(b)-\sinh(b)\sinh(a),</math> we get: <math display="block">\cosh(s_1-s_2) = \cosh(s_3-s_4)</math> as functions <math>\cosh(s)</math> is even we get two solutions: <math display="block">\begin{align} s_1-s_2 &= s_3-s_4 \\ s_1-s_2 &= -s_3+s_4 \end{align}</math> from the last equation, leading to a non-trivial solution, we solve <math>s_2</math> and substitute into the dependent equation, we obtain <math>e^{s_1}</math> and then <math>e^{s_2},</math> we have: <math display="block">\begin{align} e^{s_1} &= e^{s_4}{\frac{m_1 e^{s_3}+m_2 e^{s_4}} {m_1 e^{s_4}+m_2 e^{s_3}}} \\ e^{s_2} &= e^{s_3}{\frac{m_1 e^{s_3}+m_2 e^{s_4}} {m_1 e^{s_4}+m_2 e^{s_3}}} \end{align}</math> It is a solution to the problem, but expressed by the parameters of velocity. Return substitution to get the solution for velocities is: <math display="block">\begin{align} v_1/c &= \tanh(s_1) = {\frac{e^{s_1}-e^{-s_1}} {e^{s_1}+e^{-s_1}}} \\ v_2/c &= \tanh(s_2) = {\frac{e^{s_2}-e^{-s_2}} {e^{s_2}+e^{-s_2}}} \end{align}</math> Substitute the previous solutions and replace: <math>e^{s_3}=\sqrt{\frac{c+u_1} {c-u_1}}</math> and <math>e^{s_4}=\sqrt{\frac{c+u_2}{c-u_2}}, </math> after long transformation, with substituting: <math display="inline"> Z=\sqrt{\left(1-u_1^2/c^2\right) \left(1-u_2^2/c^2\right)} </math> we get: <math display="block">\begin{align} v_1 &= \frac{2 m_1 m_2 c^2 u_2 Z+2 m_2^2 c^2 u_2-(m_1^2+m_2^2) u_1 u_2^2+(m_1^2-m_2^2) c^2 u_1} {2 m_1 m_2 c^2 Z-2 m_2^2 u_1 u_2-(m_1^2-m_2^2) u_2^2+(m_1^2+m_2^2) c^2} \\ v_2 &= \frac{2 m_1 m_2 c^2 u_1 Z+2 m_1^2 c^2 u_1-(m_1^2+m_2^2) u_1^2 u_2+(m_2^2-m_1^2) c^2 u_2} {2 m_1 m_2 c^2 Z-2 m_1^2 u_1 u_2-(m_2^2-m_1^2) u_1^2+(m_1^2+m_2^2) c^2}\,. \end{align}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)