Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Electromagnet
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Force exerted by magnetic field === Likewise, on the solenoid, the force exerted by an electromagnet on a conductor located at a section of core material is: {{NumBlk|:|<math>F = \frac{B^2 A}{2 \mu_0} </math>|{{EquationRef|2}}}} This equation can be derived from the [[Magnetic energy|energy stored in a magnetic field]]. [[Energy]] is force times distance. Rearranging terms yields the equation above. The 1.6 T limit on the field<ref name="Pauley" /><ref name="Short" /> previously mentioned sets a limit on the maximum force per unit core area, or [[magnetic pressure]], an iron-core electromagnet can exert; roughly: :<math>\frac{F}{A} = \frac {(B_\text{sat})^2}{2 \mu_0} \approx 1000\ \mathrm{kPa} = 10^6 \mathrm{N/m^2} = 145\ \mathrm{{lbf/in^2}}</math> <!--(1.6**2)/(2*4*pi*10**-7)--> for the core's saturation limit, <math>B_{sat}</math>. In more intuitive units, it is useful to remember that at 1 T the magnetic pressure is approximately {{Convert|4|atm|kg/cm2}}. Given a core geometry, the magnetic field needed for a given force can be calculated from ({{EquationNote|Eq. 2}}); if the result is much more than 1.6 T, a larger core must be used. However, computing the magnetic field and force exerted by ferromagnetic materials in general is difficult for two reasons. First, the strength of the field varies from point to point in a complicated way, particularly outside the core and in air gaps, where ''fringing fields'' and ''[[leakage flux]]'' must be considered. Second, the magnetic field and force are [[Nonlinear system|nonlinear]] functions of the current, depending on the nonlinear relation between <math>B</math> and <math>\mathbf{H}</math> for the particular core material used. For precise calculations, computer programs that can produce a model of the magnetic field using the [[finite element method]] are employed.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)