Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Equivalence principle
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Active, passive, and inertial masses === Some of the tests of the equivalence principle use names for the different ways mass appears in physical formulae. In nonrelativistic physics three kinds of mass can be distinguished:<ref name=Will2014>{{Cite journal |last=Will |first=Clifford M. |date=Dec 2014 |title=The Confrontation between General Relativity and Experiment |journal=Living Reviews in Relativity |language=en |volume=17 |issue=1 |page=4 |doi=10.12942/lrr-2014-4 |doi-access=free |issn=2367-3613 |pmc=5255900 |pmid=28179848|arxiv=1403.7377 |bibcode=2014LRR....17....4W }}</ref> # Inertial mass intrinsic to an object, the sum of all of its mass–energy. # Passive mass, the response to gravity, the object's weight. # Active mass, the mass that determines the objects gravitational effect. By definition of active and passive gravitational mass, the force on <math>M_1</math> due to the gravitational field of <math>M_0</math> is: <math display="block">F_1 = \frac{M_0^\mathrm{act} M_1^\mathrm{pass}}{r^2}</math> Likewise the force on a second object of arbitrary mass<sub>2</sub> due to the gravitational field of mass<sub>0</sub> is: <math display="block">F_2 = \frac{M_0^\mathrm{act} M_2^\mathrm{pass}}{r^2}</math> By definition of inertial mass:<math display="block">F = m^\mathrm{inert} a</math>if <math>m_1</math> and <math>m_2</math> are the same distance <math>r</math> from <math>m_0</math> then, by the weak equivalence principle, they fall at the same rate (i.e. their accelerations are the same). <math display="block">a_1 = \frac{F_1}{m_1^\mathrm{inert}} = a_2 = \frac{F_2}{m_2^\mathrm{inert}}</math> Hence: <math display="block">\frac{M_0^\mathrm{act} M_1^\mathrm{pass}}{r^2 m_1^\mathrm{inert}} = \frac{M_0^\mathrm{act} M_2^\mathrm{pass}}{r^2 m_2^\mathrm{inert}}</math> Therefore: <math display="block">\frac{M_1^\mathrm{pass}}{m_1^\mathrm{inert}} = \frac{M_2^\mathrm{pass}}{m_2^\mathrm{inert}}</math> In other words, passive gravitational mass must be proportional to inertial mass for objects, independent of their material composition if the weak equivalence principle is obeyed. The dimensionless ''[[Eötvös experiment|Eötvös]]-parameter'' or ''Eötvös ratio'' <math>\eta(A,B)</math> is the difference of the ratios of gravitational and inertial masses divided by their average for the two sets of test masses "A" and "B". <math display="block">\eta(A,B)=2\frac{ \left(\frac{m_{\textrm pass}}{m_{\textrm inert}}\right)_A-\left(\frac{m_{\textrm pass}}{m_{\textrm inert}}\right)_B }{\left(\frac{m_{\textrm pass}}{m_{\textrm inert}}\right)_A+\left(\frac{m_{\textrm pass}}{m_{\textrm inert}}\right)_B}.</math> Values of this parameter are used to compare tests of the equivalence principle.<ref name=Will2014/>{{rp|10}} A similar parameter can be used to compare passive and active mass. By [[Newton's laws of motion#Third law|Newton's third law of motion]]: <math display="block">F_1 = \frac{M_0^\mathrm{act} M_1^\mathrm{pass}}{r^2}</math> must be equal and opposite to <math display="block">F_0 = \frac{M_1^\mathrm{act} M_0^\mathrm{pass}}{r^2}</math> It follows that: <math display="block">\frac{M_0^\mathrm{act}}{M_0^\mathrm{pass}} = \frac{M_1^\mathrm{act}}{M_1^\mathrm{pass}}</math> In words, passive gravitational mass must be proportional to active gravitational mass for all objects. The difference, <math display="block">S_{0,1} = \frac{M_0^\mathrm{act}}{M_0^\mathrm{pass}} - \frac{M_1^\mathrm{act}}{M_1^\mathrm{pass}}</math> is used to quantify differences between passive and active mass.<ref>{{Cite journal |last1=Singh |first1=Vishwa Vijay |last2=Müller |first2=Jürgen |last3=Biskupek |first3=Liliane |last4=Hackmann |first4=Eva |last5=Lämmerzahl |first5=Claus |date=2023-07-13 |title=Equivalence of Active and Passive Gravitational Mass Tested with Lunar Laser Ranging |url=https://link.aps.org/doi/10.1103/PhysRevLett.131.021401 |journal=Physical Review Letters |language=en |volume=131 |issue=2 |page=021401 |doi=10.1103/PhysRevLett.131.021401 |pmid=37505941 |arxiv=2212.09407 |bibcode=2023PhRvL.131b1401S |issn=0031-9007}}</ref> <!-- I have created [[User talk:Lemmiwinks2#Redundant edits (active, passive, and inertial masses)|a list of known places where the above material appears]]. -->
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)