Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Equivalence relation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Relations that are not equivalences === * The relation "β₯" between real numbers is reflexive and transitive, but not symmetric. For example, 7 β₯ 5 but not 5 β₯ 7. * The relation "has a [[common factor]] greater than 1 with" between [[natural numbers]] greater than 1, is reflexive and symmetric, but not transitive. For example, the natural numbers 2 and 6 have a common factor greater than 1, and 6 and 3 have a common factor greater than 1, but 2 and 3 do not have a common factor greater than 1. * The [[empty relation]] ''R'' (defined so that ''aRb'' is never true) on a set ''X'' is [[Vacuously true|vacuously]] symmetric and transitive; however, it is not reflexive (unless ''X'' itself is empty). * The relation "is approximately equal to" between real numbers, even if more precisely defined, is not an equivalence relation, because although reflexive and symmetric, it is not transitive, since multiple small changes can accumulate to become a big change. However, if the approximation is defined asymptotically, for example by saying that two functions ''f'' and ''g'' are approximately equal near some point if the limit of ''f β g'' is 0 at that point, then this defines an equivalence relation.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)