Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Euler equations (fluid dynamics)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Incompressible Euler equations== In convective form the incompressible Euler equations in case of density variable in space are:{{sfn|Hunter|2006|p=}} {{Equation box 1 |indent=: |title='''Incompressible Euler equations'''<br/>(''convective or Lagrangian form'') |equation=<math>\begin{align} {D\rho \over Dt} &= 0\\ {D\mathbf{u} \over Dt} &= -\frac{\nabla p}{\rho} + \mathbf{g} \\ \nabla \cdot \mathbf{u} &= 0 \end{align}</math> |cellpadding |border |border colour = #0073CF |background colour=#F5FFFA }} where the additional variables are: *<math>\rho</math> is the fluid [[mass density]], *<math>p</math> is the [[pressure]], <math>p = \rho w</math>. The first equation, which is the new one, is the incompressible [[continuity equation]]. In fact the general continuity equation would be: <math display="block">{\partial \rho \over\partial t} + \mathbf u \cdot \nabla \rho + \rho \nabla \cdot \mathbf u = 0,</math> but here the last term is identically zero for the incompressibility constraint. ===Conservation form=== {{See also|conservation equation|}} The incompressible Euler equations in the Froude limit are equivalent to a single conservation equation with conserved quantity and associated flux respectively: <math display="block"> \mathbf y = \begin{pmatrix}\rho \\ \rho \mathbf u \\0\end{pmatrix}; \qquad {\mathbf F} = \begin{pmatrix}\rho \mathbf u \\ \rho \mathbf u \otimes \mathbf u + p \mathbf I\\\mathbf u\end{pmatrix}. </math> Here <math>\mathbf y</math> has length <math>N+2</math> and <math>\mathbf F</math> has size <math>(N+2)N</math>.{{efn|In 3D for example <math>\mathbf y</math> has length 5, <math>\mathbf I</math> has size 3Γ3 and <math>\mathbf F</math> has size 5Γ3, so the explicit forms are: <math display="block"> {\mathbf y}=\begin{pmatrix}\rho \\ \rho u_1 \\ \rho u_2 \\ \rho u_3 \\0\end{pmatrix}; \quad {\mathbf F}=\begin{pmatrix}\rho u_1 & \rho u_2 & \rho u_3 \\ \rho u_1^2 + p & \rho u_1u_2 & \rho u_1u_3 \\ \rho u_1 u_2 & \rho u_2^2 + p & \rho u_2u_3 \\ \rho u_3 u_1 & \rho u_3 u_2 & \rho u_3^2 + p \\ u_1 & u_2 & u_3 \end{pmatrix}. </math> }} In general (not only in the Froude limit) Euler equations are expressible as: <math display="block"> \frac {\partial}{\partial t}\begin{pmatrix}\rho \\ \rho \mathbf u \\0\end{pmatrix}+ \nabla \cdot \begin{pmatrix}\rho \mathbf u\\\rho \mathbf u \otimes \mathbf u + p \mathbf I\\ \mathbf u\end{pmatrix} = \begin{pmatrix}0 \\ \rho \mathbf g \\ 0 \end{pmatrix}. </math> ===Conservation variables=== The variables for the equations in conservation form are not yet optimised. In fact we could define: <math display="block"> {\mathbf y}=\begin{pmatrix}\rho \\ \mathbf j \\0\end{pmatrix}; \qquad {\mathbf F}=\begin{pmatrix} \mathbf j \\ \mathbf j \otimes \frac {1} \rho \, \mathbf j+ p \mathbf I\\ \frac \mathbf j \rho \end{pmatrix}, </math> where <math>\mathbf j = \rho \mathbf u</math> is the [[momentum]] density, a conservation variable. {{Equation box 1 |indent=: |title='''Incompressible Euler equation(s)'''<br/>(''conservation or Eulerian form'') |equation=<math> \frac {\partial}{\partial t}\begin{pmatrix}\rho \\ \mathbf j \\0\end{pmatrix}+ \nabla \cdot \begin{pmatrix}\mathbf j \\ \mathbf j \otimes \frac 1 \rho \, \mathbf j + p \mathbf I\\ \frac \mathbf j \rho\end{pmatrix} = \begin{pmatrix}0 \\ \mathbf f \\ 0 \end{pmatrix} </math> |cellpadding |border |border colour = #0073CF |background colour=#F5FFFA }} where <math>\mathbf f = \rho \mathbf g</math> is the [[force density]], a conservation variable.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)