Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Euler line
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Representation== ===Equation=== Let ''A'', ''B'', ''C'' denote the vertex angles of the reference triangle, and let ''x'' : ''y'' : ''z'' be a variable point in [[trilinear coordinates]]; then an equation for the Euler line is :<math>\sin (2A) \sin(B - C)x + \sin (2B) \sin(C - A)y + \sin (2C) \sin(A - B)z = 0.</math> An equation for the Euler line in [[barycentric coordinates (mathematics)|barycentric coordinates]] <math>\alpha :\beta :\gamma</math> is<ref>Scott, J.A., "Some examples of the use of areal coordinates in triangle geometry", ''Mathematical Gazette'' 83, November 1999, 472-477.</ref> :<math>(\tan C -\tan B)\alpha +(\tan A -\tan C)\beta + (\tan B -\tan A)\gamma =0.</math> ===Parametric representation=== Another way to represent the Euler line is in terms of a parameter ''t''. Starting with the circumcenter (with trilinear coordinates <math>\cos A : \cos B : \cos C</math>) and the orthocenter (with trilinears <math>\sec A : \sec B : \sec C = \cos B \cos C : \cos C \cos A : \cos A \cos B),</math> every point on the Euler line, except the orthocenter, is given by the trilinear coordinates :<math>\cos A + t \cos B \cos C : \cos B + t \cos C \cos A : \cos C + t \cos A \cos B</math> formed as a [[linear combination]] of the trilinears of these two points, for some ''t''. For example: * The [[circumcenter]] has trilinears <math>\cos A:\cos B:\cos C,</math> corresponding to the parameter value <math>t=0.</math> * The [[centroid]] has trilinears <math>\cos A + \cos B \cos C : \cos B + \cos C \cos A : \cos C + \cos A \cos B,</math> corresponding to the parameter value <math>t=1.</math> * The [[nine-point center]] has trilinears <math>\cos A + 2 \cos B \cos C : \cos B + 2 \cos C \cos A : \cos C + 2 \cos A \cos B,</math> corresponding to the parameter value <math>t=2.</math> * The [[de Longchamps point]] has trilinears <math>\cos A - \cos B \cos C : \cos B - \cos C \cos A : \cos C - \cos A \cos B,</math> corresponding to the parameter value <math>t=-1.</math> ===Slope=== In a [[Cartesian coordinate system]], denote the slopes of the sides of a triangle as <math>m_1,</math> <math>m_2,</math> and <math>m_3,</math> and denote the slope of its Euler line as <math>m_E</math>. Then these slopes are related according to<ref name="BHS">Wladimir G. Boskoff, Laurent¸iu Homentcovschi, and Bogdan D. Suceava, "Gossard's Perspector and Projective Consequences", ''Forum Geometricorum'', Volume 13 (2013), 169–184. [http://forumgeom.fau.edu/FG2013volume13/FG201318.pdf]</ref>{{rp|Lemma 1}} :<math>m_1m_2 + m_1m_3 + m_1m_E + m_2m_3 + m_2m_E + m_3m_E</math> ::<math> + 3m_1m_2m_3m_E + 3 = 0.</math> Thus the slope of the Euler line (if finite) is expressible in terms of the slopes of the sides as :<math>m_E=-\frac{m_1m_2 + m_1m_3 + m_2m_3 + 3}{m_1 + m_2 + m_3 + 3m_1m_2m_3}.</math> Moreover, the Euler line is parallel to an acute triangle's side ''BC'' if and only if<ref name=BHS/>{{rp|p.173}} <math>\tan B \tan C = 3.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)