Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Extinction
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Genetic pollution === {{Main|Genetic pollution}} Extinction sometimes results for species evolved to specific ecologies<ref>{{cite journal |last=Mooney |first=H.A. |author2=Cleland, E.E. |year=2001 |title=The evolutionary impact of invasive species |journal=[[Proceedings of the National Academy of Sciences|PNAS]] |volume=98 |issue=10 |pages=5446β5451 |doi=10.1073/pnas.091093398 |pmid=11344292 |pmc=33232 |bibcode=2001PNAS...98.5446M |doi-access=free}}</ref> that are subjected to [[genetic pollution]]βi.e., uncontrolled [[Hybrid (biology)|hybridization]], [[introgression]] and genetic swamping that lead to homogenization or [[Fitness (biology)|out-competition]] from the introduced ([[Heterosis|or hybrid]]) species.<ref>{{cite web |url=http://www.nativeseednetwork.org/article_view?id=13 |title=Glossary: definitions from the following publication: Aubry, C., R. Shoal and V. Erickson. 2005. Grass cultivars: their origins, development, and use on national forests and grasslands in the Pacific Northwest. USDA Forest Service. 44 pages, plus appendices.; Native Seed Network (NSN), Institute for Applied Ecology, 563 SW Jefferson Ave, Corvallis, OR 97333, USA |archive-url=https://web.archive.org/web/20060222092651/http://www.nativeseednetwork.org/article_view?id=13 |archive-date=22 February 2006 |url-status=dead}}</ref> Endemic populations can face such extinctions when new populations are imported or [[selective breeding|selectively bred]] by people, or when habitat modification brings previously isolated species into contact. Extinction is likeliest for [[rare species]] coming into contact with more abundant ones;<ref name="RareEucalypts"/> [[interbreeding]] can swamp the rarer gene pool and create hybrids, depleting the purebred gene pool (for example, the endangered [[wild water buffalo]] is most threatened with extinction by genetic pollution from [[Water buffalo|the abundant domestic water buffalo]]). Such extinctions are not always apparent from [[morphology (biology)|morphological]] (non-genetic) observations. Some degree of [[gene flow]] is a normal evolutionary process; nevertheless, hybridization (with or without introgression) threatens rare species' existence.<ref>{{cite journal |title=Extinction by Hybridization and Introgression |first1=J.M. |last1=Rhymer |first2=D. |last2=Simberloff |journal=Annual Review of Ecology and Systematics |date=November 1996 |volume=27 |issue=1 |pages=83β109 |doi=10.1146/annurev.ecolsys.27.1.83 |publisher=Annual Reviews |quote=Introduced species, in turn, are seen as competing with or preying on native species or destroying their habitat. Introduces species (or [[subspecies]]), however, can generate another kind of extinction, a genetic extinction by hybridization and introgression with native flora and fauna |jstor=2097230 |bibcode=1996AnRES..27...83R}}</ref><ref>{{cite book |title=Genetic pollution from farm forestry using eucalypt species and hybrids : a report for the RIRDC/L&WA/FWPRDC Joint Venture Agroforestry Program |first1=Brad M. |last1=Potts |others=Robert C. Barbour, Andrew B. Hingston |date=September 2001 |isbn=978-0-642-58336-9 |publisher=Australian Government, Rural Industrial Research and Development Corporation}}</ref> The gene pool of a [[species]] or a [[population]] is the variety of genetic information in its living members. A large gene pool (extensive [[genetic diversity]]) is associated with robust populations that can survive bouts of intense [[Selection (biology)|selection]]. Meanwhile, low genetic diversity (see [[inbreeding]] and [[population bottlenecks]]) reduces the range of adaptions possible.<ref> {{cite web |url=http://adl.brs.gov.au/data/warehouse/brsShop/data/12858_10_1_3.pdf |title=Genetic diversity |page=104 |year=2003 |access-date=2010-05-30 |quote=In other words, greater genetic diversity can offer greater resilience. In order to maintain the capacity of our forests to [[adaption|adapt]] to future changes, therefore, genetic diversity must be preserved |url-status=dead |archive-url=https://web.archive.org/web/20110313092336/http://adl.brs.gov.au/data/warehouse/brsShop/data/12858_10_1_3.pdf |archive-date=2011-03-13}}</ref> Replacing native with alien genes narrows genetic diversity within the original population,<ref name="RareEucalypts"> {{cite web |url=http://adl.brs.gov.au/data/warehouse/brsShop/data/12858_10_1_3.pdf |title=Australia's state of the forests report |page=107 |year=2003 |url-status=dead |archive-url=https://web.archive.org/web/20110313092336/http://adl.brs.gov.au/data/warehouse/brsShop/data/12858_10_1_3.pdf |archive-date=2011-03-13}}</ref><ref>{{cite journal |last1=Lindenmayer |first1=D. B. |last2=Hobbs |first2=R. J. |last3=Salt |first3=D. |title=Plantation forests and biodiversity conservation |journal=Australian Forestry |date=January 2003 |volume=66 |issue=1 |pages=62β66 |doi=10.1080/00049158.2003.10674891 |bibcode=2003AuFor..66...62L |s2cid=53968395 |url=https://researchrepository.murdoch.edu.au/id/eprint/4637/1/plantation_forests.pdf |access-date=9 February 2022 |archive-date=17 February 2022 |archive-url=https://web.archive.org/web/20220217143102/https://researchrepository.murdoch.edu.au/id/eprint/4637/1/plantation_forests.pdf |url-status=live}}</ref> thereby increasing the chance of extinction.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)