Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Extractive metallurgy
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Recovery of precious metals by ionometallurgy ==== Precious metals are rare, naturally occurring metallic chemical elements of high economic value. Chemically, the precious metals tend to be less reactive than most elements. They include gold and silver, but also the so-called platinum group metals: ruthenium, rhodium, palladium, osmium, iridium, and platinum (see precious metals). Extraction of these metals from their corresponding hosting minerals would typically require pyrometallurgy (e.g., roasting), hydrometallurgy (cyanidation), or both as processing routes. Early studies have demonstrated that gold dissolution rate in Ethaline compares very favourably to the cyanidation method, which is further enhanced by the addition of iodine as an oxidising agent. In an industrial process the iodine has the potential to be employed as an electrocatalyst, whereby it is continuously recovered in situ from the reduced iodide by electrochemical oxidation at the anode of an electrochemical cell. Dissolved metals can be selectively deposited at the cathode by adjusting the electrode potential. The method also allows better selectivity as part of the gangue (e.g., pyrite) tend to be dissolved more slowly.<ref>{{cite journal |last1=Jenkin |first1=G.R.T. |last2=Al-Bassam |first2=A.Z.M. |last3=Harris |first3=R.C. |last4=Abbott |first4=A. |last5=Smith |first5=D.J. |last6=Holwell |first6=D.A. |last7=Chapman |first7=R.J. |last8=Stanley |first8=C.J. |title=The application of deep eutectic solvent ionic liquids for environmentally-friendly dissolution and recovery of precious metals |journal=Minerals Engineering |date=2016 |volume=87 |pages=18β24 |doi=10.1016/j.mineng.2015.09.026 |bibcode=2016MiEng..87...18J |doi-access=free |hdl=10141/603645 |hdl-access=free }}</ref> Sperrylite (PtAs<sub>2</sub>) and moncheite (PtTe<sub>2</sub>), which are typically the more abundant platinum minerals in many orthomagmatic deposits, do not react under the same conditions in Ethaline because they are disulphide (pyrite), diarsenide (sperrylite) or ditellurides (calaverite and moncheite) minerals, which are particularly resistant to iodine oxidation. The reaction mechanism by which dissolution of platinum minerals is taking place is still under investigation.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)