Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Fourier analysis
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Summary=== For periodic functions, both the Fourier transform and the DTFT comprise only a discrete set of frequency components (Fourier series), and the transforms diverge at those frequencies. One common practice (not discussed above) is to handle that divergence via [[Dirac delta]] and [[Dirac comb]] functions. But the same spectral information can be discerned from just one cycle of the periodic function, since all the other cycles are identical. Similarly, finite-duration functions can be represented as a Fourier series, with no actual loss of information except that the periodicity of the inverse transform is a mere artifact. It is common in practice for the duration of ''s''(β’) to be limited to the period, {{mvar|P}} or {{mvar|N}}. But these formulas do not require that condition. {| class="wikitable" style="text-align:left" |+ <math>s(t)</math> transforms (continuous-time) |- ! !! Continuous frequency !! Discrete frequencies |- ! Transform | <math>S(f)\, \triangleq\, \int_{-\infty}^{\infty} s(t) \cdot e^{-i2\pi f t} \,dt</math> || <math>\underbrace{\frac{1}{P}\cdot S\left(\frac{k}{P}\right)}_ {S[k]}\, \triangleq\, \frac{1}{P} \int_{-\infty}^{\infty} s(t) \cdot e^{-i2\pi \frac{k}{P} t}\,dt \equiv \frac{1}{P} \int_P s_{_P}(t) \cdot e^{-i2\pi \frac{k}{P} t} \,dt</math> |- ! Inverse | <math>s(t) = \int_{-\infty}^{\infty} S(f) \cdot e^{ i2\pi f t}\, df</math> ||<math>\underbrace{s_{_P}(t) = \sum_{k=-\infty}^{\infty} S[k] \cdot e^{i2\pi \frac{k}{P} t}}_{\text{Poisson summation formula (Fourier series)}}\,</math> |} {| class="wikitable" style="text-align:left" |+ <math>s(nT)</math> transforms (discrete-time) |- ! !! Continuous frequency !! Discrete frequencies |- ! Transform | <math>\underbrace{S_\tfrac{1}{T}(f)\, \triangleq\, \sum_{n=-\infty}^{\infty} s[n]\cdot e^{-i2\pi f nT}}_{\text{Poisson summation formula (DTFT)}}</math> || <math> \begin{align} \underbrace{S_\tfrac{1}{T}\left(\frac{k}{NT}\right)}_ {S[k]}\, &\triangleq\, \sum_{n=-\infty}^{\infty} s[n]\cdot e^{-i2\pi \frac{kn}{N}}\\ &\equiv \underbrace{\sum_{N} s_{_N}[n]\cdot e^{-i2\pi \frac{kn}{N}}}_{\text{DFT}}\, \end{align} </math> |- ! Inverse | <math>s[n] = \underbrace{T \int_\frac{1}{T} S_\tfrac{1}{T}(f)\cdot e^{i2\pi f nT} \,df}_{\text{Fourier series coefficient}}</math> <math>\sum_{n=-\infty}^{\infty} s[n]\cdot \delta(t-nT) = \underbrace{\int_{-\infty}^{\infty} S_\tfrac{1}{T}(f)\cdot e^{i2\pi f t}\,df}_{\text{inverse Fourier transform}}\,</math> || <math> s_{_N}[n] = \underbrace{\frac{1}{N} \sum_{N} S[k]\cdot e^{i2\pi \frac{kn}{N}}}_{\text{inverse DFT}} </math> |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)