Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Frame bundle
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Orthonormal frame bundle== If a vector bundle ''<math>E</math>'' is equipped with a [[Riemannian bundle metric]] then each fiber ''<math>E_x</math>'' is not only a vector space but an [[inner product space]]. It is then possible to talk about the set of all [[orthonormal frame]]s for ''<math>E_x</math>''. An orthonormal frame for ''<math>E_x</math>'' is an ordered [[orthonormal basis]] for ''<math>E_x</math>'', or, equivalently, a [[linear isometry]] :<math>p:\mathbb{R}^k \to E_x</math> where ''<math>\mathbb{R}^k</math>'' is equipped with the standard [[Euclidean metric]]. The [[orthogonal group]] ''<math>\mathrm{O}(k)</math>'' acts freely and transitively on the set of all orthonormal frames via right composition. In other words, the set of all orthonormal frames is a right ''<math>\mathrm{O}(k)</math>''-[[torsor]]. The '''orthonormal frame bundle''' of ''<math>E</math>'', denoted ''<math>F_{\mathrm{O}}(E)</math>'', is the set of all orthonormal frames at each point ''<math>x</math>'' in the base space ''<math>X</math>''. It can be constructed by a method entirely analogous to that of the ordinary frame bundle. The orthonormal frame bundle of a rank ''<math>k</math>'' Riemannian vector bundle ''<math>E \to X</math>'' is a principal ''<math>\mathrm{O}(k)</math>''-bundle over ''<math>X</math>''. Again, the construction works just as well in the smooth category. If the vector bundle ''<math>E</math>'' is [[orientability|orientable]] then one can define the '''oriented orthonormal frame bundle''' of ''<math>E</math>'', denoted ''<math>F_{\mathrm{SO}}(E)</math>'', as the principal ''<math>\mathrm{SO}(k)</math>''-bundle of all positively oriented orthonormal frames. If ''<math>M</math>'' is an ''<math>n</math>''-dimensional [[Riemannian manifold]], then the orthonormal frame bundle of ''<math>M</math>'', denoted ''<math>F_{\mathrm{O}}(M)</math>'' or ''<math>\mathrm{O} (M)</math>'', is the orthonormal frame bundle associated with the tangent bundle of ''<math>M</math>'' (which is equipped with a Riemannian metric by definition). If ''<math>M</math>'' is orientable, then one also has the oriented orthonormal frame bundle ''<math>F_{\mathrm{SO}}M</math>''. Given a Riemannian vector bundle ''<math>E</math>'', the orthonormal frame bundle is a principal ''<math>\mathrm{O}(k)</math>''-[[subbundle]] of the general linear frame bundle. In other words, the inclusion map :<math>i:{\mathrm F}_{\mathrm O}(E) \to {\mathrm F}_{\mathrm{GL}}(E)</math> is principal [[bundle map]]. One says that ''<math>F_{\mathrm{O}}(E)</math>'' is a [[reduction of the structure group]] of ''<math>F_{\mathrm{GL}}(E)</math>'' from ''<math>\mathrm{GL}(n,\mathbb{R})</math>'' to ''<math>\mathrm{O}(k)</math>''.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)