Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Functional derivative
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Examples=== ====Thomas–Fermi kinetic energy functional==== The [[Thomas–Fermi model]] of 1927 used a kinetic energy functional for a noninteracting uniform [[free electron model|electron gas]] in a first attempt of [[density-functional theory]] of electronic structure: <math display="block">T_\mathrm{TF}[\rho] = C_\mathrm{F} \int \rho^{5/3}(\mathbf{r}) \, d\mathbf{r} \, .</math> Since the integrand of {{math|''T''<sub>TF</sub>[''ρ'']}} does not involve derivatives of {{math|''ρ''('''''r''''')}}, the functional derivative of {{math|''T''<sub>TF</sub>[''ρ'']}} is,<ref name=ParrYangP247A.6>{{harvp|Parr|Yang|1989|loc=p. 247, Eq. A.6}}.</ref> <math display="block">\frac{\delta T_{\mathrm{TF}}}{\delta \rho (\boldsymbol{r}) } = C_\mathrm{F} \frac{\partial \rho^{5/3}(\mathbf{r})}{\partial \rho(\mathbf{r})} = \frac{5}{3} C_\mathrm{F} \rho^{2/3}(\mathbf{r}) \, .</math> ====Coulomb potential energy functional==== The '''electron-nucleus''' potential energy is <math display="block">V[\rho] = \int \frac{\rho(\boldsymbol{r})}{|\boldsymbol{r}|} \ d\boldsymbol{r}.</math> Applying the definition of functional derivative, <math display="block">\begin{align} \int \frac{\delta V}{\delta \rho(\boldsymbol{r})} \ \phi(\boldsymbol{r}) \ d\boldsymbol{r} & {} = \left [ \frac{d}{d\varepsilon} \int \frac{\rho(\boldsymbol{r}) + \varepsilon \phi(\boldsymbol{r})}{|\boldsymbol{r}|} \ d\boldsymbol{r} \right ]_{\varepsilon=0} \\[1ex] & {} = \int \frac {\phi(\boldsymbol{r})} {|\boldsymbol{r}|} \ d\boldsymbol{r} \, . \end{align}</math> So, <math display="block"> \frac{\delta V}{\delta \rho(\boldsymbol{r})} = \frac{1}{|\boldsymbol{r}|} \ . </math> The functional derivative of the classical part of the '''electron-electron interaction''' (often called Hartree energy) is <math display="block">J[\rho] = \frac{1}{2}\iint \frac{\rho(\mathbf{r}) \rho(\mathbf{r}')}{| \mathbf{r}-\mathbf{r}' |}\, d\mathbf{r} d\mathbf{r}' \, .</math> From the [[#Functional derivative|definition of the functional derivative]], <math display="block">\begin{align} \int \frac{\delta J}{\delta\rho(\boldsymbol{r})} \phi(\boldsymbol{r})d\boldsymbol{r} & {} = \left [ \frac {d \ }{d\varepsilon} \, J[\rho + \varepsilon\phi] \right ]_{\varepsilon = 0} \\ & {} = \left [ \frac {d \ }{d\varepsilon} \, \left ( \frac{1}{2}\iint \frac {[\rho(\boldsymbol{r}) + \varepsilon \phi(\boldsymbol{r})] \, [\rho(\boldsymbol{r}') + \varepsilon \phi(\boldsymbol{r}')] }{| \boldsymbol{r}-\boldsymbol{r}' |}\, d\boldsymbol{r} d\boldsymbol{r}' \right ) \right ]_{\varepsilon = 0} \\ & {} = \frac{1}{2}\iint \frac {\rho(\boldsymbol{r}') \phi(\boldsymbol{r}) }{| \boldsymbol{r}-\boldsymbol{r}' |}\, d\boldsymbol{r} d\boldsymbol{r}' + \frac{1}{2}\iint \frac {\rho(\boldsymbol{r}) \phi(\boldsymbol{r}') }{| \boldsymbol{r}-\boldsymbol{r}' |}\, d\boldsymbol{r} d\boldsymbol{r}' \\ \end{align}</math> The first and second terms on the right hand side of the last equation are equal, since {{math|'''''r'''''}} and {{math|'''''r′'''''}} in the second term can be interchanged without changing the value of the integral. Therefore, <math display="block"> \int \frac{\delta J}{\delta\rho(\boldsymbol{r})} \phi(\boldsymbol{r})d\boldsymbol{r} = \int \left ( \int \frac {\rho(\boldsymbol{r}') }{| \boldsymbol{r}-\boldsymbol{r}' |} d\boldsymbol{r}' \right ) \phi(\boldsymbol{r}) d\boldsymbol{r} </math> and the functional derivative of the electron-electron Coulomb potential energy functional {{math|''J''}}[''ρ''] is,<ref name=ParrYangP248A.11>{{harvp|Parr|Yang|1989|loc=p. 248, Eq. A.11}}.</ref> <math display="block"> \frac{\delta J}{\delta\rho(\boldsymbol{r})} = \int \frac {\rho(\boldsymbol{r}') }{| \boldsymbol{r}-\boldsymbol{r}' |} d\boldsymbol{r}' \, . </math> The second functional derivative is <math display="block">\frac{\delta^2 J[\rho]}{\delta \rho(\mathbf{r}')\delta\rho(\mathbf{r})} = \frac{\partial}{\partial \rho(\mathbf{r}')} \left ( \frac{\rho(\mathbf{r}')}{| \mathbf{r}-\mathbf{r}' |} \right ) = \frac{1}{| \mathbf{r}-\mathbf{r}' |}.</math> ====von Weizsäcker kinetic energy functional==== In 1935 [[Carl Friedrich von Weizsacker|von Weizsäcker]] proposed to add a gradient correction to the Thomas-Fermi kinetic energy functional to make it better suit a molecular electron cloud: <math display="block">T_\mathrm{W}[\rho] = \frac{1}{8} \int \frac{\nabla\rho(\mathbf{r}) \cdot \nabla\rho(\mathbf{r})}{ \rho(\mathbf{r}) } d\mathbf{r} = \int t_\mathrm{W}(\mathbf{r}) \ d\mathbf{r} \, ,</math> where <math display="block"> t_\mathrm{W} \equiv \frac{1}{8} \frac{\nabla\rho \cdot \nabla\rho}{ \rho } \qquad \text{and} \ \ \rho = \rho(\boldsymbol{r}) \ . </math> Using a previously derived [[#Formula|formula]] for the functional derivative, <math display="block">\begin{align} \frac{\delta T_\mathrm{W}}{\delta \rho} & = \frac{\partial t_\mathrm{W}}{\partial \rho} - \nabla\cdot\frac{\partial t_\mathrm{W}}{\partial \nabla \rho} \\ & = -\frac{1}{8}\frac{\nabla\rho \cdot \nabla\rho}{\rho^2} - \left ( \frac {1}{4} \frac {\nabla^2\rho} {\rho} - \frac {1}{4} \frac {\nabla\rho \cdot \nabla\rho} {\rho^2} \right ) \qquad \text{where} \ \ \nabla^2 = \nabla \cdot \nabla \ , \end{align}</math> and the result is,<ref name=ParrYangP247A.9>{{harvp|Parr|Yang|1989|loc= p. 247, Eq. A.9}}.</ref> <math display="block"> \frac{\delta T_\mathrm{W}}{\delta \rho} = \ \ \, \frac{1}{8}\frac{\nabla\rho \cdot \nabla\rho}{\rho^2} - \frac{1}{4}\frac{\nabla^2\rho}{\rho} \ . </math> ====Entropy==== The [[information entropy|entropy]] of a discrete [[random variable]] is a functional of the [[probability mass function]]. <math display="block">H[p(x)] = -\sum_x p(x) \log p(x)</math> Thus, <math display="block">\begin{align} \sum_x \frac{\delta H}{\delta p(x)} \, \phi(x) & {} = \left[ \frac{d}{d\varepsilon} H[p(x) + \varepsilon\phi(x)] \right]_{\varepsilon=0}\\ & {} = \left [- \, \frac{d}{d\varepsilon} \sum_x \, [p(x) + \varepsilon\phi(x)] \ \log [p(x) + \varepsilon\phi(x)] \right]_{\varepsilon=0} \\ & {} = -\sum_x \, [1+\log p(x)] \ \phi(x) \, . \end{align}</math> Thus, <math display="block">\frac{\delta H}{\delta p(x)} = -1-\log p(x).</math> ==== Exponential ==== Let <math display="block"> F[\varphi(x)]= e^{\int \varphi(x) g(x)dx}.</math> Using the delta function as a test function, <math display="block">\begin{align} \frac{\delta F[\varphi(x)]}{\delta \varphi(y)} & {} = \lim_{\varepsilon\to 0}\frac{F[\varphi(x)+\varepsilon\delta(x-y)]-F[\varphi(x)]}{\varepsilon}\\ & {} = \lim_{\varepsilon\to 0}\frac{e^{\int (\varphi(x)+\varepsilon\delta(x-y)) g(x)dx}-e^{\int \varphi(x) g(x)dx}}{\varepsilon}\\ & {} = e^{\int \varphi(x) g(x)dx}\lim_{\varepsilon\to 0}\frac{e^{\varepsilon \int \delta(x-y) g(x)dx}-1}{\varepsilon}\\ & {} = e^{\int \varphi(x) g(x)dx}\lim_{\varepsilon\to 0}\frac{e^{\varepsilon g(y)}-1}{\varepsilon}\\ & {} = e^{\int \varphi(x) g(x)dx}g(y). \end{align}</math> Thus, <math display="block"> \frac{\delta F[\varphi(x)]}{\delta \varphi(y)} = g(y) F[\varphi(x)]. </math> This is particularly useful in calculating the [[Correlation function (quantum field theory)|correlation functions]] from the [[Partition function (quantum field theory)|partition function]] in [[quantum field theory]]. ====Functional derivative of a function==== A function can be written in the form of an integral like a functional. For example, <math display="block">\rho(\boldsymbol{r}) = F[\rho] = \int \rho(\boldsymbol{r}') \delta(\boldsymbol{r}-\boldsymbol{r}')\, d\boldsymbol{r}'.</math> Since the integrand does not depend on derivatives of ''ρ'', the functional derivative of ''ρ''{{math|('''''r''''')}} is, <math display="block">\frac {\delta \rho(\boldsymbol{r})} {\delta\rho(\boldsymbol{r}')} \equiv \frac {\delta F} {\delta\rho(\boldsymbol{r}')} = \frac{\partial \ \ }{\partial \rho(\boldsymbol{r}')} \, [\rho(\boldsymbol{r}') \delta(\boldsymbol{r}-\boldsymbol{r}')] = \delta(\boldsymbol{r}-\boldsymbol{r}').</math> ==== Functional derivative of iterated function==== The functional derivative of the iterated function <math>f(f(x))</math> is given by: <math display="block">\frac{\delta f(f(x))}{\delta f(y) } = f'(f(x))\delta(x-y) + \delta(f(x)-y)</math> and <math display="block">\frac{\delta f(f(f(x)))}{\delta f(y) } = f'(f(f(x))(f'(f(x))\delta(x-y) + \delta(f(x)-y)) + \delta(f(f(x))-y)</math> In general: <math display="block">\frac{\delta f^N(x)}{\delta f(y)} = f'( f^{N-1}(x) ) \frac{ \delta f^{N-1}(x)}{\delta f(y)} + \delta( f^{N-1}(x) - y ) </math> Putting in {{math|1=''N'' = 0}} gives: <math display="block"> \frac{\delta f^{-1}(x)}{\delta f(y) } = - \frac{ \delta(f^{-1}(x)-y ) }{ f'(f^{-1}(x)) }</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)