Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
G-structure on a manifold
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Examples === The following examples are defined for [[Real vector bundle|real vector bundles]], particularly the [[tangent bundle]] of a [[manifold|smooth manifold]]. {| class="wikitable" !Group homomorphism !Group <math>G</math> !<math>G</math>-structure !Obstruction |- |<math>GL^+(n) < GL(n)</math> |[[General linear group#real case|General linear group of positive determinant]] |[[Orientation (manifold)|Orientation]] |Bundle must be orientable |- |<math>SL(n) < GL(n)</math> |[[Special linear group]] |[[Volume form]] |Bundle must be orientable (<math>SL \to GL^+</math> is a [[deformation retract]]) |- |<math>SL^{\pm}(n) < GL(n)</math> |Determinant <math>\pm 1</math> |Pseudo-[[volume form]] |Always possible |- |<math>O(n) < GL(n)</math> |[[Orthogonal group]] |[[Riemannian metric]] |Always possible (<math>O(n)</math> is the [[maximal compact subgroup]], so the inclusion is a deformation retract) |- |<math>O(1,n-1) < GL(n)</math> |[[Indefinite orthogonal group]] |[[Pseudo Riemannian metric|Pseudo-Riemannian metric]] |Topological obstruction<ref>It is a [[gravitational field]] in [[gauge gravitation theory]] ({{Cite journal|last1=Sardanashvily|first1=G.|year=2006|title=Gauge gravitation theory from the geometric viewpoint|journal=International Journal of Geometric Methods in Modern Physics|volume=3|issue=1|pages=vβxx|arxiv=gr-qc/0512115|bibcode=2005gr.qc....12115S}})</ref> |- |<math>GL(n,\mathbf{C}) < GL(2n,\mathbf{R})</math> |[[Complex general linear group]] |[[almost complex manifold|Almost complex structure]] |Topological obstruction |- |<math>GL(n,\mathbf{H})\cdot Sp(1) < GL(4n,\mathbf{R})</math> | * <math>GL(n,\mathbf{H})</math>: [[Quaternion|quaternionic]] general linear group acting on <math>\mathbf{H}^n \cong \mathbf{R}^{4n}</math> from the left * <math>Sp(1)=Spin(3)</math>: group of unit quaternions acting on <math>\mathbf{H}^n</math> from the right |almost quaternionic structure<ref name=":0">{{harvnb|Besse|1987|loc=Β§14.61}}</ref> |Topological obstruction<ref name=":0" /> |- |<math>GL(k) \times GL(n-k) < GL(n)</math> |[[General linear group]] |Decomposition as a [[Whitney sum]] (direct sum) of sub-bundles of rank <math>k</math> and <math>n-k</math>. |Topological obstruction |} Some <math>G</math>-structures are defined in terms of others: Given a Riemannian metric on an oriented manifold, a <math>G</math>-structure for the 2-fold [[covering space|cover]] <math>\mbox{Spin}(n) \to \mbox{SO}(n)</math> is a [[spin manifold|spin structure]]. (Note that the group homomorphism here is ''not'' an inclusion.)
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)