Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Gamma function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Properties == === General === Besides the fundamental property discussed above: <math display="block">\Gamma(z+1) = z\ \Gamma(z)</math> other important functional equations for the gamma function are [[reflection formula|Euler's reflection formula]] <math display="block">\Gamma(1-z) \Gamma(z) = \frac{\pi}{\sin \pi z}, \qquad z \not\in \Z</math> which implies <math display="block">\Gamma(z - n) = (-1)^{n-1} \; \frac{\Gamma(-z) \Gamma(1+z)}{\Gamma(n+1-z)}, \qquad n \in \Z</math> and the [[Multiplication theorem#Gamma function–Legendre formula|Legendre duplication formula]] <math display="block">\Gamma(z) \Gamma\left(z + \tfrac12\right) = 2^{1-2z} \; \sqrt{\pi} \; \Gamma(2z).</math> {{Collapse top|title=Derivation of Euler's reflection formula}} '''Proof 1''' With Euler's infinite product <math display=block>\Gamma(z) = \frac1z \prod_{n=1}^{\infty} \frac{(1+1/n)^z}{1 + z/n}</math> compute <math display=block>\frac{1}{\Gamma(1-z)\Gamma(z)} = \frac{1}{(-z)\Gamma(-z)\Gamma(z)} = z \prod_{n=1}^{\infty} \frac{(1-z/n)(1+z/n)}{(1+1/n)^{-z}(1+1/n)^{z}} = z \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{n^2}\right) = \frac{\sin \pi z}{\pi}\,,</math> where the last equality is a [[Sine#Partial fraction and product expansions of complex sine|known result]]. A similar derivation begins with Weierstrass's definition. '''Proof 2''' First prove that <math display="block">I=\int_{-\infty}^\infty \frac{e^{ax}}{1+e^x}\, dx=\int_0^\infty \frac{v^{a-1}}{1+v}\, dv=\frac{\pi}{\sin\pi a},\quad a\in (0,1).</math> Consider the positively oriented rectangular contour <math>C_R</math> with vertices at <math>R</math>, <math>-R</math>, <math>R+2\pi i</math> and <math>-R+2\pi i</math> where <math>R\in\mathbb{R}^+</math>. Then by the [[residue theorem]], <math display="block">\int_{C_R}\frac{e^{az}}{1+e^z}\, dz=-2\pi ie^{a\pi i}.</math> Let <math display="block">I_R=\int_{-R}^R \frac{e^{ax}}{1+e^x}\, dx</math> and let <math>I_R'</math> be the analogous integral over the top side of the rectangle. Then <math>I_R\to I</math> as <math>R\to\infty</math> and <math>I_R'=-e^{2\pi i a}I_R</math>. If <math>A_R</math> denotes the right vertical side of the rectangle, then <math display="block">\left|\int_{A_R} \frac{e^{az}}{1+e^z}\, dz\right|\le \int_0^{2\pi}\left|\frac{e^{a(R+it)}}{1+e^{R+it}}\right|\, dt\le Ce^{(a-1)R}</math> for some constant <math>C</math> and since <math>a<1</math>, the integral tends to <math>0</math> as <math>R\to\infty</math>. Analogously, the integral over the left vertical side of the rectangle tends to <math>0</math> as <math>R\to\infty</math>. Therefore <math display="block">I-e^{2\pi ia}I=-2\pi ie^{a\pi i},</math> from which <math display="block">I=\frac{\pi}{\sin \pi a},\quad a\in (0,1).</math> Then <math display="block">\Gamma (1-z)=\int_0^\infty e^{-u}u^{-z}\, du=t\int_0^\infty e^{-vt}(vt)^{-z}\, dv,\quad t>0</math> and <math display="block">\begin{align}\Gamma (z)\Gamma (1-z)&=\int_0^\infty\int_0^\infty e^{-t(1+v)}v^{-z}\, dv\, dt\\ &=\int_0^\infty \frac{v^{-z}}{1+v}\, dv\\&=\frac{\pi}{\sin \pi (1-z)}\\&=\frac{\pi}{\sin \pi z},\quad z\in (0,1).\end{align}</math> Proving the reflection formula for all <math>z\in (0,1)</math> proves it for all <math>z\in\mathbb{C}\setminus\mathbb{Z}</math> by analytic continuation. {{Collapse bottom}} {{Collapse top|title=Derivation of the Legendre duplication formula}} The [[beta function]] can be represented as <math display="block">\Beta (z_1,z_2)=\frac{\Gamma (z_1)\Gamma (z_2)}{\Gamma (z_1+z_2)}=\int_0^1 t^{z_1-1}(1-t)^{z_2-1} \, dt.</math> Setting <math>z_1=z_2=z</math> yields <math display="block">\frac{\Gamma^2(z)}{\Gamma (2z)}=\int_0^1 t^{z-1}(1-t)^{z-1} \, dt.</math> After the substitution <math>t=\frac{1+u}{2}</math>: <math display="block">\frac{\Gamma^2(z)}{\Gamma (2z)}=\frac{1}{2^{2z-1}}\int_{-1}^1 \left(1-u^{2}\right)^{z-1} \, du.</math> The function <math>(1-u^2)^{z-1}</math> is even, hence <math display="block">2^{2z-1}\Gamma^2(z)=2\Gamma (2z)\int_0^1 (1-u^2)^{z-1} \, du.</math> Now <math display="block">\Beta \left(\frac{1}{2},z\right)=\int_0^1 t^{\frac{1}{2}-1}(1-t)^{z-1} \, dt, \quad t=s^2.</math> Then <math display="block">\Beta \left(\frac{1}{2},z\right)=2\int_0^1 (1-s^2)^{z-1} \, ds = 2\int_0^1 (1-u^2)^{z-1} \, du.</math> This implies <math display="block">2^{2z-1}\Gamma^2(z)=\Gamma (2z)\Beta \left(\frac{1}{2},z\right).</math> Since <math display="block">\Beta \left(\frac{1}{2},z\right)=\frac{\Gamma \left(\frac{1}{2}\right)\Gamma (z)}{\Gamma \left(z+\frac{1}{2}\right)}, \quad \Gamma \left(\frac{1}{2}\right)=\sqrt{\pi},</math> the Legendre duplication formula follows: <math display="block">\Gamma (z)\Gamma \left(z+\frac{1}{2}\right)=2^{1-2z}\sqrt{\pi} \; \Gamma (2z).</math> {{Collapse bottom}} The duplication formula is a special case of the [[multiplication theorem]] (see <ref name="ReferenceA">{{dlmf|authorlink=Richard Askey|first=R. A.|last=Askey|first2=R.|last2=Roy|id=8.7|title=Series Expansions|ref=none}}</ref> Eq. 5.5.6): <math display="block">\prod_{k=0}^{m-1}\Gamma\left(z + \frac{k}{m}\right) = (2 \pi)^{\frac{m-1}{2}} \; m^{\frac12 - mz} \; \Gamma(mz).</math> A simple but useful property, which can be seen from the limit definition, is: <math display="block">\overline{\Gamma(z)} = \Gamma(\overline{z}) \; \Rightarrow \; \Gamma(z)\Gamma(\overline{z}) \in \mathbb{R} .</math> In particular, with {{math|1=''z'' = ''a'' + ''bi''}}, this product is <math display="block">|\Gamma(a+bi)|^2 = |\Gamma(a)|^2 \prod_{k=0}^\infty \frac{1}{1+\frac{b^2}{(a+k)^2}}</math> If the real part is an integer or a half-integer, this can be finitely expressed in [[Closed-form expression|closed form]]: <math display="block"> \begin{align} |\Gamma(bi)|^2 & = \frac{\pi}{b\sinh \pi b} \\[1ex] \left|\Gamma\left(\tfrac{1}{2}+bi\right)\right|^2 & = \frac{\pi}{\cosh \pi b} \\[1ex] \left|\Gamma\left(1+bi\right)\right|^2 & = \frac{\pi b}{\sinh \pi b} \\[1ex] \left|\Gamma\left(1+n+bi\right)\right|^2 & = \frac{\pi b}{\sinh \pi b} \prod_{k=1}^n \left(k^2 + b^2 \right), \quad n \in \N \\[1ex] \left|\Gamma\left(-n+bi\right)\right|^2 & = \frac{\pi}{b \sinh \pi b} \prod_{k=1}^n \left(k^2 + b^2 \right)^{-1}, \quad n \in \N \\[1ex] \left|\Gamma\left(\tfrac{1}{2} \pm n+bi\right)\right|^2 & = \frac{\pi}{\cosh \pi b} \prod_{k=1}^n \left(\left( k-\tfrac{1}{2}\right)^2 + b^2 \right)^{\pm 1}, \quad n \in \N \\[-1ex]& \end{align} </math> {{Collapse top|title=Proof of absolute value formulas for arguments of integer or half-integer real part}} First, consider the reflection formula applied to <math>z=bi</math>. <math display="block">\Gamma(bi)\Gamma(1-bi)=\frac{\pi}{\sin \pi bi}</math> Applying the recurrence relation to the second term: <math display="block">-bi \cdot \Gamma(bi)\Gamma(-bi)=\frac{\pi}{\sin \pi bi}</math> which with simple rearrangement gives <math display="block">\Gamma(bi)\Gamma(-bi)=\frac{\pi}{-bi\sin \pi bi}=\frac{\pi}{b\sinh \pi b}</math> Second, consider the reflection formula applied to <math>z=\tfrac{1}{2}+bi</math>. <math display="block">\Gamma(\tfrac{1}{2}+bi)\Gamma\left(1-(\tfrac{1}{2}+bi)\right)=\Gamma(\tfrac{1}{2}+bi)\Gamma(\tfrac{1}{2}-bi)=\frac{\pi}{\sin \pi (\tfrac{1}{2}+bi)}=\frac{\pi}{\cos \pi bi}=\frac{\pi}{\cosh \pi b}</math> Formulas for other values of <math>z</math> for which the real part is integer or half-integer quickly follow by [[mathematical induction|induction]] using the recurrence relation in the positive and negative directions. {{Collapse bottom}} Perhaps the best-known value of the gamma function at a non-integer argument is <math display="block">\Gamma\left(\tfrac12\right)=\sqrt{\pi},</math> which can be found by setting <math display="inline">z = \frac{1}{2}</math> in the reflection formula, by using the relation to the [[beta function]] given below with <math display="inline">z_1 = z_2 = \frac{1}{2}</math>, or simply by making the substitution <math>t = u^2</math> in the integral definition of the gamma function, resulting in a [[Gaussian integral]]. In general, for non-negative integer values of <math>n</math> we have: <math display="block">\begin{align} \Gamma\left(\tfrac 1 2 + n\right) &= {(2n)! \over 4^n n!} \sqrt{\pi} = \frac{(2n-1)!!}{2^n} \sqrt{\pi} = \binom{n-\frac{1}{2}}{n} n! \sqrt{\pi} \\[8pt] \Gamma\left(\tfrac 1 2 - n\right) &= {(-4)^n n! \over (2n)!} \sqrt{\pi} = \frac{(-2)^n}{(2n-1)!!} \sqrt{\pi} = \frac{\sqrt{\pi}}{\binom{-1/2}{n} n!} \end{align}</math> where the [[double factorial]] <math>(2n-1)!! = (2n-1)(2n-3)\cdots(3)(1)</math>. See [[Particular values of the gamma function]] for calculated values. It might be tempting to generalize the result that <math display="inline">\Gamma \left( \frac{1}{2} \right) = \sqrt\pi</math> by looking for a formula for other individual values <math>\Gamma(r)</math> where <math>r</math> is rational, especially because according to [[Digamma function#Gauss's digamma theorem|Gauss's digamma theorem]], it is possible to do so for the closely related [[digamma function]] at every rational value. However, these numbers <math>\Gamma(r)</math> are not known to be expressible by themselves in terms of elementary functions. It has been proved that <math>\Gamma (n + r)</math> is a [[transcendental number]] and [[algebraic independence|algebraically independent]] of <math>\pi</math> for any integer <math>n</math> and each of the fractions <math display="inline">r = \frac{1}{6}, \frac{1}{4}, \frac{1}{3}, \frac{2}{3}, \frac{3}{4}, \frac{5}{6}</math>.<ref>{{cite journal|last=Waldschmidt |first=M. |date=2006 |url=http://www.math.jussieu.fr/~miw/articles/pdf/TranscendencePeriods.pdf |archive-url=https://web.archive.org/web/20060506050646/http://www.math.jussieu.fr/~miw/articles/pdf/TranscendencePeriods.pdf |archive-date=2006-05-06 |url-status=live |title=Transcendence of Periods: The State of the Art |journal=Pure Appl. Math. Quart. |volume=2 |issue=2 |pages=435–463 |doi=10.4310/pamq.2006.v2.n2.a3|doi-access=free}}</ref> In general, when computing values of the gamma function, we must settle for numerical approximations. The derivatives of the gamma function are described in terms of the [[polygamma function]], {{math|''ψ''{{isup|(0)}}(''z'')}}: <math display="block">\Gamma'(z)=\Gamma(z)\psi^{(0)}(z).</math> For a positive integer {{mvar|m}} the derivative of the gamma function can be calculated as follows: [[File:Plot of gamma function in the complex plane from -2-i to 6+2i with colors created in Mathematica.svg|alt=Gamma function in the complex plane with colors showing its argument|thumb|Colors showing the argument of the gamma function in the complex plane from {{math|−2 − 2''i''}} to {{math|6 + 2''i''}}]] <math display="block">\Gamma'(m+1) = m! \left( - \gamma + \sum_{k=1}^m\frac{1}{k} \right)= m! \left( - \gamma + H(m) \right)\,,</math> where H(m) is the mth [[harmonic number]] and {{math|''γ''}} is the [[Euler–Mascheroni constant]]. For <math>\Re(z) > 0</math> the <math>n</math>th derivative of the gamma function is: <math display="block">\frac{d^n}{dz^n}\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} (\log t)^n \, dt.</math> (This can be derived by differentiating the integral form of the gamma function with respect to <math>z</math>, and using the technique of [[differentiation under the integral sign]].) Using the identity <math display="block">\Gamma^{(n)}(1)=(-1)^n B_n(\gamma, 1! \zeta(2), \ldots, (n-1)! \zeta(n))</math> where <math>\zeta(z)</math> is the [[Riemann zeta function]], and <math>B_n</math> is the <math>n</math>-th [[Bell polynomials|Bell polynomial]], we have in particular the [[Laurent series]] expansion of the gamma function <ref>{{Cite web |title=How to obtain the Laurent expansion of gamma function around $z=0$? |url=https://math.stackexchange.com/q/1287555 |access-date=2022-08-17 |website=Mathematics Stack Exchange |language=en}}</ref> <math display="block">\Gamma(z) = \frac1z - \gamma + \frac12\left(\gamma^2 + \frac{\pi^2}6\right)z - \frac16\left(\gamma^3 + \frac{\gamma\pi^2}2 + 2 \zeta(3)\right)z^2 + O(z^3).</math> === Inequalities === When restricted to the positive real numbers, the gamma function is a strictly [[logarithmically convex function]]. This property may be stated in any of the following three equivalent ways: * For any two positive real numbers <math>x_1</math> and <math>x_2</math>, and for any <math>t \in [0, 1]</math>, <math display="block">\Gamma(tx_1 + (1 - t)x_2) \le \Gamma(x_1)^t\Gamma(x_2)^{1 - t}.</math> * For any two positive real numbers <math>x_1</math> and <math>x_2</math>, and <math>x_2</math> > <math>x_1</math><math display="block"> \left(\frac{\Gamma(x_2)}{\Gamma(x_1)}\right)^{\frac{1}{x_2 - x_1}} > \exp\left(\frac{\Gamma'(x_1)}{\Gamma(x_1)}\right).</math> * For any positive real number <math>x</math>, <math display="block"> \Gamma''(x) \Gamma(x) > \Gamma'(x)^2.</math> The last of these statements is, essentially by definition, the same as the statement that <math>\psi^{(1)}(x) > 0</math>, where <math>\psi^{(1)}</math> is the [[polygamma function]] of order 1. To prove the logarithmic convexity of the gamma function, it therefore suffices to observe that <math>\psi^{(1)}</math> has a series representation which, for positive real {{mvar|x}}, consists of only positive terms. Logarithmic convexity and [[Jensen's inequality]] together imply, for any positive real numbers <math>x_1, \ldots, x_n</math> and <math>a_1, \ldots, a_n</math>, <math display="block">\Gamma\left(\frac{a_1x_1 + \cdots + a_nx_n}{a_1 + \cdots + a_n}\right) \le \bigl(\Gamma(x_1)^{a_1} \cdots \Gamma(x_n)^{a_n}\bigr)^{\frac{1}{a_1 + \cdots + a_n}}.</math> There are also bounds on ratios of gamma functions. The best-known is [[Gautschi's inequality]], which says that for any positive real number {{mvar|x}} and any {{math|''s'' ∈ (0, 1)}}, <math display="block">x^{1 - s} < \frac{\Gamma(x + 1)}{\Gamma(x + s)} < \left(x + 1\right)^{1 - s}.</math> === Stirling's formula === {{Main|Stirling's approximation}} [[File:Gamma cplot.svg|thumb|Representation of the gamma function in the complex plane. Each point <math>z</math> is colored according to the argument of {{nowrap|<math>\Gamma(z)</math>.}} The contour plot of the modulus <math>|\Gamma(z)|</math> is also displayed.]] [[File:Gamma abs 3D.png|thumb|3-dimensional plot of the absolute value of the complex gamma function]] The behavior of <math>\Gamma(x)</math> for an increasing positive real variable is given by [[Stirling's formula]] <math display="block">\Gamma(x+1)\sim\sqrt{2\pi x}\left(\frac{x}{e}\right)^x,</math> where the symbol <math>\sim</math> means asymptotic convergence: the ratio of the two sides converges to 1 in the limit {{nowrap|<math display="inline">x \to + \infty</math>.<ref name="Davis"/>}} This growth is faster than exponential, <math>\exp(\beta x)</math>, for any fixed value of <math>\beta</math>. Another useful limit for asymptotic approximations for <math>x \to + \infty</math> is: <math display="block"> {\Gamma(x+\alpha)}\sim{\Gamma(x)x^\alpha}, \qquad \alpha \in \Complex. </math> When writing the error term as an infinite product, Stirling's formula can be used to define the gamma function: <ref>{{cite book |last1=Artin |first1=Emil |title=The Gamma Function |date=2015 |page = 24|publisher=Dover }}</ref> <math display="block"> \Gamma(x) = \sqrt{\frac{2\pi}{x}} \left(\frac{x}{e}\right)^x \prod_{n=0}^{\infty} \left[\frac{1}{e}\left(1+\frac{1}{x+n}\right)^{x+n+\frac{1}{2}} \right]</math> === Extension to negative, non-integer values === Although the main definition of the gamma function—the Euler integral of the second kind—is only valid (on the real axis) for positive arguments, its domain can be extended with [[analytic continuation]]<ref>{{cite book |last1=Oldham |first1=Keith |last2=Myland |first2=Jan |last3=Spanier |first3=Jerome |title=An Atlas of Functions |date=2010 |publisher=Springer Science & Business Media |location=Ch 43 |isbn=9780387488073 |edition=2}}</ref> to negative arguments by shifting the negative argument to positive values by using either the Euler's reflection formula, <math display="block"> \Gamma(-x) = \frac{1}{\Gamma(x+1)}\frac{\pi}{\sin\big(\pi(x+1)\big)}, </math> or the fundamental property, <math display="block"> \Gamma(-x):=\frac1{-x}\Gamma(-x+1) , </math> when <math>x\not\in\mathbb{Z}</math>. For example, <math display="block"> \Gamma\left(-\frac12\right)=-2\Gamma\left(\frac12\right) . </math> === Residues === The behavior for non-positive <math>z</math> is more intricate. Euler's integral does not converge for {{nowrap|<math>\Re(z) \le 0</math>,}} but the function it defines in the positive complex half-plane has a unique [[analytic continuation]] to the negative half-plane. One way to find that analytic continuation is to use Euler's integral for positive arguments and extend the domain to negative numbers by repeated application of the recurrence formula,<ref name="Davis" /> <math display="block">\Gamma(z)=\frac{\Gamma(z+n+1)}{z(z+1)\cdots(z+n)},</math> choosing <math>n</math> such that <math>z + n</math> is positive. The product in the denominator is zero when <math>z</math> equals any of the integers <math>0, -1, -2, \ldots</math>. Thus, the gamma function must be undefined at those points to avoid [[division by zero]]; it is a [[meromorphic function]] with [[simple pole]]s at the non-positive integers.<ref name="Davis" /> For a function <math>f</math> of a complex variable <math>z</math>, at a [[simple pole]] <math>c</math>, the [[Residue (complex analysis)|residue]] of <math>f</math> is given by: <math display="block">\operatorname{Res}(f,c)=\lim_{z\to c}(z-c)f(z).</math> For the simple pole <math>z = -n</math>, the recurrence formula can be rewritten as: <math display="block">(z+n) \Gamma(z)=\frac{\Gamma(z+n+1)}{z(z+1)\cdots(z+n-1)}.</math> The numerator at <math>z = -n,</math> is <math display="block">\Gamma(z+n+1) = \Gamma(1) = 1</math> and the denominator <math display="block">z(z+1)\cdots(z+n-1) = -n(1-n)\cdots(n-1-n) = (-1)^n n!.</math> So the residues of the gamma function at those points are:<ref name="Mathworld">{{MathWorld|urlname=GammaFunction |title=Gamma Function}}</ref> <math display="block">\operatorname{Res}(\Gamma,-n)=\frac{(-1)^n}{n!}.</math>The gamma function is non-zero everywhere along the real line, although it comes arbitrarily close to zero as {{math|''z'' → −∞}}. There is in fact no complex number <math>z</math> for which <math>\Gamma (z) = 0</math>, and hence the [[reciprocal gamma function]] <math display="inline">\frac {1}{\Gamma (z)}</math> is an [[entire function]], with zeros at <math>z = 0, -1, -2, \ldots</math>.<ref name="Davis" /> === Minima and maxima === On the real line, the gamma function has a local minimum at {{math|''z''<sub>min</sub> ≈ {{gaps|+1.46163|21449|68362|34126}}}}<ref>{{Cite OEIS|A030169|2=Decimal expansion of real number x such that y = Gamma(x) is a minimum}}</ref> where it attains the value {{math|Γ(''z''<sub>min</sub>) ≈ {{gaps|+0.88560|31944|10888|70027}}}}.<ref>{{Cite OEIS|A030171|2=Decimal expansion of real number y such that y = Gamma(x) is a minimum}}</ref> The gamma function rises to either side of this minimum. The solution to {{math|1=Γ(''z'' − 0.5) = Γ(''z'' + 0.5)}} is {{math|1=''z'' = +1.5}} and the common value is {{math|1=Γ(1) = Γ(2) = +1}}. The positive solution to {{math|1=Γ(''z'' − 1) = Γ(''z'' + 1)}} is {{math|1=''z'' = ''φ'' ≈ +1.618}}, the [[golden ratio]], and the common value is {{math|1=Γ(''φ'' − 1) = Γ(''φ'' + 1) = ''φ''! ≈ {{gaps|+1.44922|96022|69896|60037}}}}.<ref>{{Cite OEIS|A178840|Decimal expansion of the factorial of Golden Ratio}}</ref> The gamma function must alternate sign between its poles at the non-positive integers because the product in the forward recurrence contains an odd number of negative factors if the number of poles between <math>z</math> and <math>z + n</math> is odd, and an even number if the number of poles is even.<ref name="Mathworld" /> The values at the local extrema of the gamma function along the real axis between the non-positive integers are: : {{math|1=Γ({{gaps|−0.50408|30082|64455|40925...}}<ref>{{Cite OEIS|A175472|Decimal expansion of the absolute value of the abscissa of the local maximum of the Gamma function in the interval [ -1,0]}}</ref>) = {{gaps|−3.54464|36111|55005|08912...}}}}, : {{math|1=Γ({{gaps|−1.57349|84731|62390|45877...}}<ref>{{Cite OEIS|A175473|Decimal expansion of the absolute value of the abscissa of the local minimum of the Gamma function in the interval [ -2,-1]}}</ref>) = {{gaps|2.30240|72583|39680|13582...}}}}, : {{math|1=Γ({{gaps|−2.61072|08684|44144|65000...}}<ref>{{Cite OEIS|A175474|Decimal expansion of the absolute value of the abscissa of the local maximum of the Gamma function in the interval [ -3,-2]}}</ref>) = {{gaps|−0.88813|63584|01241|92009...}}}}, : {{math|1=Γ({{gaps|−3.63529|33664|36901|09783...}}<ref>{{Cite OEIS|A256681|Decimal expansion of the [negated] abscissa of the Gamma function local minimum in the interval [-4,-3]}}</ref>) = {{gaps|0.24512|75398|34366|25043...}}}}, : {{math|1=Γ({{gaps|−4.65323|77617|43142|44171...}}<ref>{{Cite OEIS|A256682|Decimal expansion of the [negated] abscissa of the Gamma function local maximum in the interval [-5,-4]}}</ref>) = {{gaps|−0.05277|96395|87319|40076...}}}}, etc. === Integral representations === There are many formulas, besides the Euler integral of the second kind, that express the gamma function as an integral. For instance, when the real part of {{mvar|z}} is positive,<ref>{{Cite book |last1=Gradshteyn |first1=I. S.|last2=Ryzhik |first2=I. M. |title=Table of Integrals, Series, and Products |edition=Seventh |publisher=Academic Press |year=2007 |isbn=978-0-12-373637-6|page=893}}</ref> <math display="block">\Gamma (z)=\int_{-\infty}^\infty e^{zt-e^t}\, dt</math> and<ref>Whittaker and Watson, 12.2 example 1.</ref> <math display="block">\Gamma(z) = \int_0^1 \left(\log \frac{1}{t}\right)^{z-1}\,dt,</math> <math display="block">\Gamma(z) = 2c^z\int_{0}^{\infty}t^{2z-1}e^{-ct^{2}}\,dt \,,\; c>0</math> where the three integrals respectively follow from the substitutions <math>t=e^{-x}</math>, <math>t=-\log x</math> <ref>{{Cite journal |last=Detlef |first=Gronau |title=Why is the gamma function so as it is? |url=https://imsc.uni-graz.at/gronau/TMCS_1_2003.pdf |journal=Imsc.uni-graz.at}}</ref> and <math>t=cx^2</math><ref>{{cite journal |last1=Pascal Sebah |first1=Xavier Gourdon |title=Introduction to the Gamma Function |journal=Numbers Computation |url=https://www.csie.ntu.edu.tw/~b89089/link/gammaFunction.pdf |access-date=30 January 2023 |archive-date=30 January 2023 |archive-url=https://web.archive.org/web/20230130155521/https://www.csie.ntu.edu.tw/~b89089/link/gammaFunction.pdf |url-status=dead }}</ref> in Euler's second integral. The last integral in particular makes clear the connection between the gamma function at half integer arguments and the [[Gaussian integral]]: if <math>z=1/2,\; c=1</math> we get <math display="block"> \Gamma(1/2)=2\int_{0}^{\infty}e^{-t^{2}}\,dt=\sqrt{\pi} \;. </math> Binet's first integral formula for the gamma function states that, when the real part of {{mvar|z}} is positive, then:<ref>Whittaker and Watson, 12.31.</ref> <math display="block">\operatorname{log\Gamma}(z) = \left(z - \frac{1}{2}\right)\log z - z + \frac{1}{2}\log (2\pi) + \int_0^\infty \left(\frac{1}{2} - \frac{1}{t} + \frac{1}{e^t - 1}\right)\frac{e^{-tz}}{t}\,dt.</math> The integral on the right-hand side may be interpreted as a [[Laplace transform]]. That is, <math display="block">\log\left(\Gamma(z)\left(\frac{e}{z}\right)^z\sqrt{\frac{z}{2\pi}}\right) = \mathcal{L}\left(\frac{1}{2t} - \frac{1}{t^2} + \frac{1}{t(e^t - 1)}\right)(z).</math> Binet's second integral formula states that, again when the real part of {{mvar|z}} is positive, then:<ref>Whittaker and Watson, 12.32.</ref> <math display="block">\operatorname{log\Gamma}(z) = \left(z - \frac{1}{2}\right)\log z - z + \frac{1}{2}\log(2\pi) + 2\int_0^\infty \frac{\arctan(t/z)}{e^{2\pi t} - 1}\,dt.</math> Let {{math|''C''}} be a [[Hankel contour]], meaning a path that begins and ends at the point {{math|∞}} on the [[Riemann sphere]], whose unit tangent vector converges to {{math|−1}} at the start of the path and to {{math|1}} at the end, which has [[winding number]] 1 around {{math|0}}, and which does not cross {{closed-open|0, ∞}}. Fix a branch of <math>\log(-t)</math> by taking a branch cut along {{closed-open|0, ∞}} and by taking <math>\log(-t)</math> to be real when {{math|t}} is on the negative real axis. Assume {{mvar|z}} is not an integer. Then Hankel's formula for the gamma function is:<ref>Whittaker and Watson, 12.22.</ref> <math display="block">\Gamma(z) = -\frac{1}{2i\sin \pi z}\int_C (-t)^{z-1}e^{-t}\,dt,</math> where <math>(-t)^{z-1}</math> is interpreted as <math>\exp((z-1)\log(-t))</math>. The reflection formula leads to the closely related expression <math display="block">\frac{1}{\Gamma(z)} = \frac{i}{2\pi}\int_C (-t)^{-z}e^{-t}\,dt,</math> again valid whenever {{math|''z''}} is not an integer. === Continued fraction representation === The gamma function can also be represented by a sum of two [[continued fraction]]s:<ref>{{cite web | url=https://functions.wolfram.com/GammaBetaErf/ExpIntegralE/10/0005/ | title=Exponential integral E: Continued fraction representations (Formula 06.34.10.0005) }}</ref><ref>{{cite web | url=https://functions.wolfram.com/GammaBetaErf/ExpIntegralE/10/0003/ | title=Exponential integral E: Continued fraction representations (Formula 06.34.10.0003) }}</ref> <math display="block">\begin{aligned} \Gamma (z) &= \cfrac{e^{-1}}{ 2 + 0 - z + 1\cfrac{z-1}{ 2 + 2 - z + 2\cfrac{z-2}{ 2 + 4 - z + 3\cfrac{z-3}{ 2 + 6 - z + 4\cfrac{z-4}{ 2 + 8 - z + 5\cfrac{z-5}{ 2 + 10 - z + \ddots } } } } } } \\ &+\ \cfrac{e^{-1}}{ z + 0 - \cfrac{z+0}{ z + 1 + \cfrac{1}{ z + 2 - \cfrac{z+1}{ z + 3 + \cfrac{2}{ z + 4 - \cfrac{z+2}{ z + 5 + \cfrac{3}{ z + 6 - \ddots } } } } } } } \end{aligned}</math> where <math>z\in\mathbb{C}</math>. === Fourier series expansion === The [[#Log-gamma function|logarithm of the gamma function]] has the following [[Fourier series]] expansion for <math>0 < z < 1:</math> <math display="block">\operatorname{log\Gamma}(z) = \left(\frac{1}{2} - z\right)(\gamma + \log 2) + (1 - z)\log\pi - \frac{1}{2}\log\sin(\pi z) + \frac{1}{\pi}\sum_{n=1}^\infty \frac{\log n}{n} \sin (2\pi n z),</math> which was for a long time attributed to [[Ernst Kummer]], who derived it in 1847.<ref>{{cite book|first1=Harry |last1=Bateman |first2=Arthur |last2=Erdélyi |title=Higher Transcendental Functions |publisher=McGraw-Hill |date=1955 |oclc=627135 }}</ref><ref>{{cite book|first1=H. M. |last1=Srivastava |first2=J. |last2=Choi |title=Series Associated with the Zeta and Related Functions |publisher=Kluwer Academic |location=The Netherlands |date=2001 |isbn=0-7923-7054-6 }}</ref> However, [[Iaroslav Blagouchine]] discovered that [[Carl Johan Malmsten]] first derived this series in 1842.<ref name="iaroslav_06">{{cite journal|doi=10.1007/s11139-013-9528-5 |first=Iaroslav V. |last=Blagouchine |title=Rediscovery of Malmsten's integrals, their evaluation by contour integration methods and some related results |journal=Ramanujan J. |volume=35 |issue=1 |pages=21–110 |date=2014 |s2cid=120943474 |url=https://www.researchgate.net/publication/257381156}}</ref><ref name="iaroslav_06bis">{{cite journal|doi=10.1007/s11139-015-9763-z |first=Iaroslav V. |last=Blagouchine |title=Erratum and Addendum to "Rediscovery of Malmsten's integrals, their evaluation by contour integration methods and some related results" |journal=Ramanujan J. |volume=42 |issue=3 |pages=777–781 |date=2016 |s2cid=125198685 }}</ref> === Raabe's formula === In 1840 [[Joseph Ludwig Raabe]] proved that <math display="block">\int_a^{a+1}\log\Gamma(z)\, dz = \tfrac12\log2\pi + a\log a - a,\quad a>0.</math> In particular, if <math>a = 0</math> then <math display="block">\int_0^1\log\Gamma(z)\, dz = \tfrac12\log2\pi.</math> The latter can be derived taking the logarithm in the above multiplication formula, which gives an expression for the Riemann sum of the integrand. Taking the limit for <math>a \to \infty</math> gives the formula. === Pi function === An alternative notation introduced by [[Carl Friedrich Gauss|Gauss]] is the <math>\Pi</math>-function, a shifted version of the gamma function: <math display="block">\Pi(z) = \Gamma(z+1) = z \Gamma(z) = \int_0^\infty e^{-t} t^z\, dt,</math> so that <math>\Pi(n) = n!</math> for every non-negative integer <math>n</math>. Using the pi function, the reflection formula is: <math display="block">\Pi(z) \Pi(-z) = \frac{\pi z}{\sin( \pi z)} = \frac{1}{\operatorname{sinc}(z)}</math> using the normalized [[sinc function]]; while the multiplication theorem becomes: <math display="block">\Pi\left(\frac{z}{m}\right) \, \Pi\left(\frac{z-1}{m}\right) \cdots \Pi\left(\frac{z-m+1}{m}\right) = (2 \pi)^{\frac{m-1}{2}} m^{-z-\frac12} \Pi(z)\ .</math> The shifted [[reciprocal gamma function]] is sometimes denoted <math display="inline">\pi(z) = \frac{1}{\Pi(z)}\ ,</math> an [[entire function]]. The [[volume of an n-ball|volume of an {{math|''n''}}-ellipsoid]] with radii {{math|''r''{{sub|1}}, …, ''r''{{sub|''n''}}}} can be expressed as <math display="block">V_n(r_1,\dotsc,r_n)=\frac{\pi^{\frac{n}{2}}}{\Pi\left(\frac{n}{2}\right)} \prod_{k=1}^n r_k.</math> === Relation to other functions === * In the first integral defining the gamma function, the limits of integration are fixed. The upper [[incomplete gamma function]] is obtained by allowing the lower limit of integration to vary:<math display="block">\Gamma(z,x) = \int_x^\infty t^{z-1} e^{-t} dt.</math>There is a similar lower incomplete gamma function. * The gamma function is related to Euler's [[beta function]] by the formula <math display="block">\Beta(z_1,z_2) = \int_0^1 t^{z_1-1}(1-t)^{z_2-1}\,dt = \frac{\Gamma(z_1)\,\Gamma(z_2)}{\Gamma(z_1+z_2)}.</math> * The [[logarithmic derivative]] of the gamma function is called the [[digamma function]]; higher derivatives are the [[polygamma function]]s. * The analog of the gamma function over a [[finite field]] or a [[finite ring]] is the [[Gaussian sum]]s, a type of [[exponential sum]]. * The [[reciprocal gamma function]] is an [[entire function]] and has been studied as a specific topic. * The gamma function also shows up in an important relation with the [[Riemann zeta function]], <math>\zeta (z)</math>. <math display="block">\pi^{-\frac{z}{2}} \; \Gamma\left(\frac{z}{2}\right) \zeta(z) = \pi^{-\frac{1-z}{2}} \; \Gamma\left(\frac{1-z}{2}\right) \; \zeta(1-z).</math> It also appears in the following formula: <math display="block">\zeta(z) \Gamma(z) = \int_0^\infty \frac{u^{z}}{e^u - 1} \, \frac{du}{u},</math> which is valid only for <math>\Re (z) > 1</math>.{{pb}} The logarithm of the gamma function satisfies the following formula due to Lerch: <math display="block">\operatorname{log\Gamma}(z) = \zeta_H'(0,z) - \zeta'(0),</math> where <math>\zeta_H</math> is the [[Hurwitz zeta function]], <math>\zeta</math> is the Riemann zeta function and the prime ({{math|′}}) denotes differentiation in the first variable. * The gamma function is related to the [[stretched exponential function]]. For instance, the moments of that function are <math display="block">\langle\tau^n\rangle \equiv \int_0^\infty t^{n-1}\, e^{ - \left( \frac{t}{\tau} \right)^\beta} \, \mathrm{d}t = \frac{\tau^n}{\beta}\Gamma \left({n \over \beta }\right).</math> === Particular values === {{Main|Particular values of the gamma function}} Including up to the first 20 digits after the decimal point, some particular values of the gamma function are: <math display="block">\begin{array}{rcccl} \Gamma\left(-\tfrac{3}{2}\right) &=& \tfrac{4\sqrt{\pi}}{3} &\approx& +2.36327\,18012\,07354\,70306 \\ \Gamma\left(-\tfrac{1}{2}\right) &=& -2\sqrt{\pi} &\approx& -3.54490\,77018\,11032\,05459 \\ \Gamma\left(\tfrac{1}{2}\right) &=& \sqrt{\pi} &\approx& +1.77245\,38509\,05516\,02729 \\ \Gamma(1) &=& 0! &=& +1 \\ \Gamma\left(\tfrac{3}{2}\right) &=& \tfrac{\sqrt{\pi}}{2} &\approx& +0.88622\,69254\,52758\,01364 \\ \Gamma(2) &=& 1! &=& +1 \\ \Gamma\left(\tfrac{5}{2}\right) &=& \tfrac{3\sqrt{\pi}}{4} &\approx& +1.32934\,03881\,79137\,02047 \\ \Gamma(3) &=& 2! &=& +2 \\ \Gamma\left(\tfrac{7}{2}\right) &=& \tfrac{15\sqrt{\pi}}{8} &\approx& +3.32335\,09704\,47842\,55118 \\ \Gamma(4) &=& 3! &=& +6 \end{array}</math> (These numbers can be found in the [[On-Line Encyclopedia of Integer Sequences|OEIS]].<ref>{{Cite OEIS|A245886|Decimal expansion of Gamma(-3/2), where Gamma is Euler's gamma function}}</ref><ref>{{Cite OEIS|A019707|Decimal expansion of sqrt(Pi)/5}}</ref><ref>{{Cite OEIS|A002161|Decimal expansion of square root of Pi}}</ref><ref>{{Cite OEIS|A019704|Decimal expansion of sqrt(Pi)/2}}</ref><ref>{{Cite OEIS|A245884|Decimal expansion of Gamma(5/2), where Gamma is Euler's gamma function}}</ref><ref>{{Cite OEIS|A245885|Decimal expansion of Gamma(7/2), where Gamma is Euler's gamma function}}</ref> The values presented here are truncated rather than rounded.) The complex-valued gamma function is undefined for non-positive integers, but in these cases the value can be defined in the [[Riemann sphere]] as {{math|∞}}. The [[reciprocal gamma function]] is [[well defined]] and [[analytic function|analytic]] at these values (and in the [[entire function|entire complex plane]]): <math display="block">\frac{1}{\Gamma(-3)} = \frac{1}{\Gamma(-2)} = \frac{1}{\Gamma(-1)} = \frac{1}{\Gamma(0)} = 0.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)