Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Gaussian function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Multi-dimensional Gaussian function == {{main|Multivariate normal distribution}} In an <math>n</math>-dimensional space a Gaussian function can be defined as <math display="block">f(x) = \exp(-x^\mathsf{T} C x),</math> where <math>x = \begin{bmatrix} x_1 & \cdots & x_n\end{bmatrix}</math> is a column of <math>n</math> coordinates, <math>C</math> is a [[positive-definite matrix|positive-definite]] <math>n \times n</math> matrix, and <math>{}^\mathsf{T}</math> denotes [[transpose|matrix transposition]]. The integral of this Gaussian function over the whole <math>n</math>-dimensional space is given as <math display="block">\int_{\R^n} \exp(-x^\mathsf{T} C x) \, dx = \sqrt{\frac{\pi^n}{\det C}}.</math> It can be easily calculated by diagonalizing the matrix <math>C</math> and changing the integration variables to the eigenvectors of <math>C</math>. More generally a shifted Gaussian function is defined as <math display="block">f(x) = \exp(-x^\mathsf{T} C x + s^\mathsf{T} x),</math> where <math>s = \begin{bmatrix} s_1 & \cdots & s_n\end{bmatrix}</math> is the shift vector and the matrix <math>C</math> can be assumed to be symmetric, <math>C^\mathsf{T} = C</math>, and positive-definite. The following integrals with this function can be calculated with the same technique: <math display="block">\int_{\R^n} e^{-x^\mathsf{T} C x + v^\mathsf{T}x} \, dx = \sqrt{\frac{\pi^n}{\det{C}}} \exp\left(\frac{1}{4} v^\mathsf{T} C^{-1} v\right) \equiv \mathcal{M}.</math> <math display="block">\int_{\mathbb{R}^n} e^{- x^\mathsf{T} C x + v^\mathsf{T} x} (a^\mathsf{T} x) \, dx = (a^T u) \cdot \mathcal{M}, \text{ where } u = \frac{1}{2} C^{-1} v.</math> <math display="block">\int_{\mathbb{R}^n} e^{- x^\mathsf{T} C x + v^\mathsf{T} x} (x^\mathsf{T} D x) \, dx = \left( u^\mathsf{T} D u + \frac{1}{2} \operatorname{tr} (D C^{-1}) \right) \cdot \mathcal{M}.</math> <math display="block">\begin{align} & \int_{\mathbb{R}^n} e^{- x^\mathsf{T} C' x + s'^\mathsf{T} x} \left( -\frac{\partial}{\partial x} \Lambda \frac{\partial}{\partial x} \right) e^{-x^\mathsf{T} C x + s^\mathsf{T} x} \, dx \\ & \qquad = \left( 2 \operatorname{tr}(C' \Lambda C B^{- 1}) + 4 u^\mathsf{T} C' \Lambda C u - 2 u^\mathsf{T} (C' \Lambda s + C \Lambda s') + s'^\mathsf{T} \Lambda s \right) \cdot \mathcal{M}, \end{align}</math> where <math display="inline">u = \frac{1}{2} B^{- 1} v,\ v = s + s',\ B = C + C'.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)