Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Gaussian units
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== List of equations == This section has a list of the basic formulae of electromagnetism, given in both the Gaussian system and the [[International System of Quantities|International System of Quantities (ISQ)]]. Most symbol names are not given; for complete explanations and definitions, please click to the appropriate dedicated article for each equation. A simple conversion scheme for use when tables are not available may be found in Garg (2012).<ref name=Garg>A. Garg, 2012, "Classical Electrodynamics in a Nutshell" (Princeton University Press).</ref> All formulas except otherwise noted are from Ref.<ref name=Littlejohn/> === Maxwell's equations === {{main|Maxwell's equations}} Here are Maxwell's equations, both in macroscopic and microscopic forms. Only the "differential form" of the equations is given, not the "integral form"; to get the integral forms apply the [[divergence theorem]] or [[Stokes' theorem|Kelvin–Stokes theorem]]. {| class="wikitable plainrowheaders" |+ Maxwell's equations in Gaussian system and ISQ |- ! scope="col" | Name ! scope="col" | Gaussian system ! scope="col" | {{abbr|ISQ|International System of Quantities}} |- ! scope="row" | [[Gauss's law]]{{br}}(macroscopic) | <math>\nabla \cdot \mathbf{D}^{_\mathrm{G}} = 4\pi\rho_\mathrm{f}^{_\mathrm{G}}</math> | <math>\nabla \cdot \mathbf{D}^{_\mathrm{I}} = \rho_\mathrm{f}^{_\mathrm{I}}</math> |- ! scope="row" | [[Gauss's law]]<br />(microscopic) | <math>\nabla \cdot \mathbf{E}^{_\mathrm{G}} = 4\pi\rho^{_\mathrm{G}}</math> | <math>\nabla \cdot \mathbf{E}^{_\mathrm{I}} = \frac{1}{\varepsilon_0} \rho^{_\mathrm{I}}</math> |- ! scope="row" | [[Gauss's law for magnetism]] |<math>\nabla \cdot \mathbf{B}^{_\mathrm{G}} = 0</math> |<math>\nabla \cdot \mathbf{B}^{_\mathrm{I}} = 0</math> |- ! scope="row" | Maxwell–Faraday equation<br />([[Faraday's law of induction]]) | <math>\nabla \times \mathbf{E}^{_\mathrm{G}} + \frac{1}{c}\frac{\partial \mathbf{B}^{_\mathrm{G}}} {\partial t} = 0</math> | <math>\nabla \times \mathbf{E}^{_\mathrm{I}} + \frac{\partial \mathbf{B}^{_\mathrm{I}}} {\partial t} = 0</math> |- ! scope="row" | [[Ampère–Maxwell equation]]<br /> (macroscopic) | <math>\nabla \times \mathbf{H}^{_\mathrm{G}} - \frac{1}{c} \frac{\partial \mathbf{D}^{_\mathrm{G}}} {\partial t} = \frac{4\pi}{c}\mathbf{J}_\mathrm{f}^{_\mathrm{G}}</math> | <math>\nabla \times \mathbf{H}^{_\mathrm{I}} - \frac{\partial \mathbf{D}^{_\mathrm{I}}} {\partial t}= \mathbf{J}_\mathrm{f}^{_\mathrm{I}}</math> |- ! scope="row" | [[Ampère–Maxwell equation]]<br /> (microscopic) | <math>\nabla \times \mathbf{B}^{_\mathrm{G}} - \frac{1}{c}\frac{\partial \mathbf{E}^{_\mathrm{G}}} {\partial t} = \frac{4\pi}{c}\mathbf{J}^{_\mathrm{G}}</math> | <math>\nabla \times \mathbf{B}^{_\mathrm{I}} - \frac{1}{c^2}\frac{\partial \mathbf{E}^{_\mathrm{I}}} {\partial t} = \mu_0\mathbf{J}^{_\mathrm{I}}</math> |} === Other basic laws === {| class="wikitable plainrowheaders" |+ Other electromagnetic laws in Gaussian system and ISQ |- ! scope="col" | Name ! scope="col" | Gaussian system ! scope="col" | {{abbr|ISQ|International System of Quantities}} |- ! scope="row" | [[Lorentz force]] | <math>\mathbf{F} = q^{_\mathrm{G}}\,\left(\mathbf{E}^{_\mathrm{G}}+\tfrac{1}{c}\,\mathbf{v}\times\mathbf{B}^{_\mathrm{G}}\right)</math> | <math>\mathbf{F} = q^{_\mathrm{I}}\,\left(\mathbf{E}^{_\mathrm{I}}+\mathbf{v}\times\mathbf{B}^{_\mathrm{I}}\right)</math> |- ! scope="row" | [[Coulomb's law]] | <math>\mathbf{F} = \frac{q^{_\mathrm{G}}_1 q^{_\mathrm{G}}_2}{r^2}\,\mathbf{\hat r}</math> | <math>\mathbf{F} = \frac{1}{4\pi\varepsilon_0}\,\frac{q^{_\mathrm{I}}_1 q^{_\mathrm{I}}_2}{r^2}\, \mathbf{\hat r}</math> <br /> |- ! scope="row" | Electric field of<br />[[Coulomb's law|stationary point charge]] | <math>\mathbf{E}^{_\mathrm{G}} = \frac{q^{_\mathrm{G}}}{r^2}\,\mathbf{\hat r}</math> | <math>\mathbf{E}^{_\mathrm{I}} = \frac{1}{4\pi\varepsilon_0}\,\frac{q^{_\mathrm{I}}}{r^2}\,\mathbf{\hat r}</math> |- ! scope="row" | [[Biot–Savart law]]<ref>[https://books.google.com/books?id=RvZFuqw6mXEC&pg=PA180 Introduction to Electrodynamics by Capri and Panat, p180]</ref> | <math> \mathbf{B}^{_\mathrm{G}} = \frac{1}{c}\!\oint\frac{I^{_\mathrm{G}} \times \mathbf{\hat r}}{r^2}\,\operatorname{d}\!\mathbf{\boldsymbol{\ell}}</math> | <math> \mathbf{B}^{_\mathrm{I}} = \frac{\mu_0}{4\pi}\!\oint\frac{I^{_\mathrm{I}} \times \mathbf{\hat r}}{r^2}\,\operatorname{d}\!\mathbf{\boldsymbol{\ell}}</math> |- ! scope="row" | [[Poynting vector]]<br />(microscopic) | <math>\mathbf{S} = \frac{c}{4\pi}\,\mathbf{E}^{_\mathrm{G}} \times \mathbf{B}^{_\mathrm{G}}</math> | <math>\mathbf{S} = \frac{1}{\mu_0}\,\mathbf{E}^{_\mathrm{I}} \times \mathbf{B}^{_\mathrm{I}}</math> |} === Dielectric and magnetic materials === Below are the expressions for the various fields in a dielectric medium. It is assumed here for simplicity that the medium is homogeneous, linear, isotropic, and nondispersive, so that the [[permittivity]] is a simple constant. {| class="wikitable" |+ Expressions for fields in dielectric media |- ! scope="col" | Gaussian system ! scope="col" | {{abbr|ISQ|International System of Quantities}} |- | <math>\mathbf{D}^{_\mathrm{G}} = \mathbf{E}^{_\mathrm{G}}+4\pi\mathbf{P}^{_\mathrm{G}}</math> | <math>\mathbf{D}^{_\mathrm{I}} = \varepsilon_0 \mathbf{E}^{_\mathrm{I}}+\mathbf{P}^{_\mathrm{I}}</math> |- | <math>\mathbf{P}^{_\mathrm{G}} = \chi^{_\mathrm{G}}_\mathrm{e}\mathbf{E}^{_\mathrm{G}}</math> | <math>\mathbf{P}^{_\mathrm{I}} = \chi^{_\mathrm{I}}_\mathrm{e}\varepsilon_0\mathbf{E}^{_\mathrm{I}}</math> |- | <math>\mathbf{D}^{_\mathrm{G}} = \varepsilon^{_\mathrm{G}}\mathbf{E}^{_\mathrm{G}}</math> | <math>\mathbf{D}^{_\mathrm{I}} = \varepsilon^{_\mathrm{I}}\mathbf{E}^{_\mathrm{I}}</math> |- | <math>\varepsilon^{_\mathrm{G}} = 1+4\pi\chi^{_\mathrm{G}}_\mathrm{e}</math> | <math>\varepsilon^{_\mathrm{I}}/\varepsilon_0 = 1+\chi^{_\mathrm{I}}_\mathrm{e}</math> |} where * {{math|'''E'''}} and {{math|'''D'''}} are the [[electric field]] and [[Electric displacement field|displacement field]], respectively; * {{math|'''P'''}} is the [[polarization density]]; * <math>\varepsilon</math> is the [[permittivity]]; * <math>\varepsilon_0</math> is the [[permittivity of vacuum]] (used in the SI system, but meaningless in Gaussian units); and * <math>\chi_\mathrm{e}</math> is the [[electric susceptibility]]. The quantities <math>\varepsilon^{_\mathrm{G}}</math> and <math>\varepsilon^{_\mathrm{I}}/\varepsilon_0</math> are both dimensionless, and they have the same numeric value. By contrast, the [[electric susceptibility]] <math>\chi_\mathrm{e}^{_\mathrm{G}}</math> and <math>\chi_\mathrm{e}^{_\mathrm{I}}</math> are both unitless, but have {{em|different numeric values}} for the same material: <math display="block">4\pi \chi_\mathrm{e}^{_\mathrm{G}} = \chi_\mathrm{e}^{_\mathrm{I}}\,.</math> Next, here are the expressions for the various fields in a magnetic medium. Again, it is assumed that the medium is homogeneous, linear, isotropic, and nondispersive, so that the [[Permeability (electromagnetism)|permeability]] is a simple constant. {| class="wikitable" |+ Expressions for fields in magnetic media |- ! scope="col" | Gaussian system ! scope="col" | {{abbr|ISQ|International System of Quantities}} |- | <math>\mathbf{B}^{_\mathrm{G}} = \mathbf{H}^{_\mathrm{G}}+4\pi\mathbf{M}^{_\mathrm{G}}</math> | <math>\mathbf{B}^{_\mathrm{I}} = \mu_0 (\mathbf{H}^{_\mathrm{I}}+\mathbf{M}^{_\mathrm{I}})</math> |- | <math>\mathbf{M}^{_\mathrm{G}} = \chi^{_\mathrm{G}}_\mathrm{m}\mathbf{H}^{_\mathrm{G}}</math> | <math>\mathbf{M}^{_\mathrm{I}} = \chi^{_\mathrm{I}}_\mathrm{m}\mathbf{H}^{_\mathrm{I}}</math> |- | <math>\mathbf{B}^{_\mathrm{G}} = \mu^{_\mathrm{G}}\mathbf{H}^{_\mathrm{G}}</math> | <math>\mathbf{B}^{_\mathrm{I}} = \mu^{_\mathrm{I}}\mathbf{H}^{_\mathrm{I}}</math> |- | <math>\mu^{_\mathrm{G}} = 1+4\pi\chi^{_\mathrm{G}}_\mathrm{m}</math> | <math>\mu^{_\mathrm{I}}/\mu_0 = 1+\chi^{_\mathrm{I}}_\mathrm{m}</math> |} where * {{math|'''B'''}} and {{math|'''H'''}} are the [[magnetic field]]s; * {{math|'''M'''}} is [[magnetization]]; * <math>\mu</math> is [[magnetic permeability]]; * <math>\mu_0</math> is the [[permeability of vacuum]] (used in the SI system, but meaningless in Gaussian units); and * <math>\chi_\mathrm{m}</math> is the [[magnetic susceptibility]]. The quantities <math>\mu^{_\mathrm{G}}</math> and <math>\mu^{_\mathrm{I}}/\mu_0</math> are both dimensionless, and they have the same numeric value. By contrast, the [[magnetic susceptibility]] <math>\chi_\mathrm{m}^{_\mathrm{G}}</math> and <math>\chi_\mathrm{m}^{_\mathrm{I}}</math> are both unitless, but has {{em|different numeric values}} in the two systems for the same material: <math display="block">4\pi \chi_\mathrm{m}^{_\mathrm{G}} = \chi_\mathrm{m}^{_\mathrm{I}}</math> === Vector and scalar potentials === {{main|Magnetic vector potential|Electric potential}} The electric and magnetic fields can be written in terms of a vector potential {{math|'''A'''}} and a scalar potential {{mvar|ϕ}}: {| class="wikitable plainrowheaders" |+ Electromagnetic fields in Gaussian system and ISQ |- ! scope="col" | Name ! scope="col" | Gaussian system ! scope="col" | {{abbr|ISQ|International System of Quantities}} |- ! scope="row" | [[Electric field]] | <math>\mathbf{E}^{_\mathrm{G}} = -\nabla\phi^{_\mathrm{G}}-\frac{1}{c}\frac{\partial \mathbf{A}^{_\mathrm{G}}}{\partial t}</math> | <math>\mathbf{E}^{_\mathrm{I}} = -\nabla\phi^{_\mathrm{I}}-\frac{\partial \mathbf{A}^{_\mathrm{I}}}{\partial t}</math> |- ! scope="row" | [[Magnetic field|Magnetic '''B''' field]] | <math>\mathbf{B}^{_\mathrm{G}} = \nabla \times \mathbf{A}^{_\mathrm{G}}</math> | <math>\mathbf{B}^{_\mathrm{I}} = \nabla \times \mathbf{A}^{_\mathrm{I}}</math> |} === Electrical circuit === {| class="wikitable plainrowheaders" |+ Electrical circuit values in Gaussian system and ISQ |- ! scope="col" | Name ! scope="col" | Gaussian system ! scope="col" | {{abbr|ISQ|International System of Quantities}} |- ! scope="row" | [[Charge conservation]] | <math>I^{_\mathrm{G}} = \frac{\mathrm{d}Q^{_\mathrm{G}}}{\mathrm{d}t}</math> | <math>I^{_\mathrm{I}} = \frac{\mathrm{d}Q^{_\mathrm{I}}}{\mathrm{d}t}</math> |- ! scope="row" | [[Lenz's law]] | <math>V^{_\mathrm{G}} = \frac{1}{c}\frac{\mathrm{d}\mathrm{\Phi}^{_\mathrm{G}}}{\mathrm{d}t}</math> | <math>V^{_\mathrm{I}} = -\frac{\mathrm{d}\mathrm{\Phi}^{_\mathrm{I}}}{\mathrm{d}t}</math> |- ! scope="row" | [[Ohm's law]] | <math>V^{_\mathrm{G}} = R^{_\mathrm{G}} I^{_\mathrm{G}}</math> | <math>V^{_\mathrm{I}} = R^{_\mathrm{I}} I^{_\mathrm{I}}</math> |- ! scope="row" | [[Capacitance]] | <math>Q^{_\mathrm{G}} = C^{_\mathrm{G}} V^{_\mathrm{G}}</math> | <math>Q^{_\mathrm{I}} = C^{_\mathrm{I}} V^{_\mathrm{I}}</math> |- ! scope="row" | [[Inductance]] | <math>\mathrm{\Phi}^{_\mathrm{G}} = cL^{_\mathrm{G}} I^{_\mathrm{G}}</math> | <math>\mathrm{\Phi}^{_\mathrm{I}} = L^{_\mathrm{I}} I^{_\mathrm{I}}</math> |- |} where * {{mvar|Q}} is the [[electric charge]] * {{mvar|I}} is the [[electric current]] * {{mvar|V}} is the [[electric potential]] * {{math|Φ}} is the [[magnetic flux]] * {{mvar|R}} is the [[electrical resistance]] * {{mvar|C}} is the [[capacitance]] * {{mvar|L}} is the [[inductance]] === Fundamental constants === {| class="wikitable plainrowheaders" |+ Fundamental constants in Gaussian system and ISQ |- ! scope="col" | Name ! scope="col" | Gaussian system ! scope="col" | {{abbr|ISQ|International System of Quantities}} |- ! scope="row" | [[Impedance of free space]] | <math>Z_0^{_\mathrm{G}} = \frac{4\pi}{c}</math> | <math>Z_0^{_\mathrm{I}} = \sqrt{\frac{\mu_0}{\varepsilon_0}}</math> |- ! scope="row" | [[Electric constant]] | <math>1 = \frac{4\pi}{Z_0^{_\mathrm{G}}c}</math> | <math>\varepsilon_0 = \frac{1}{Z_0^{_\mathrm{I}}c}</math> |- ! scope="row" | [[Magnetic constant]] | <math>1 = \frac{Z_0^{_\mathrm{G}}c}{4\pi}</math> | <math>\mu_0 = \frac{Z_0^{_\mathrm{I}}}{c}</math> |- ! scope="row" | [[Fine-structure constant]] | <math>\alpha = \frac{(e^{_\mathrm{G}})^2}{\hbar c}</math> | <math>\alpha = \frac{1}{4\pi\varepsilon_0} \frac{(e^{_\mathrm{I}})^2}{\hbar c}</math> |- ! scope="row" | [[Magnetic flux quantum]] | <math>\phi_0^{_\mathrm{G}} = \frac{hc}{2e^{_\mathrm{G}}}</math> | <math>\phi_0^{_\mathrm{I}} = \frac{h}{2e^{_\mathrm{I}}}</math> |- ! scope="row" | [[Conductance quantum]] | <math>G_0^{_\mathrm{G}} = \frac{2(e^{_\mathrm{G}})^2}{h}</math> | <math>G_0^{_\mathrm{I}} = \frac{2(e^{_\mathrm{I}})^2}{h}</math> |- ! scope="row" | [[Bohr radius]] | <math>a_\mathrm{B} =\frac{\hbar^2}{m_\mathrm{e}(e^{_\mathrm{G}})^2}</math> | <math>a_\mathrm{B} =\frac{4\pi\varepsilon_0\hbar^2}{m_\mathrm{e}(e^{_\mathrm{I}})^2}</math> |- ! scope="row" | [[Bohr magneton]] | <math>\mu_\mathrm{B}^{_\mathrm{G}} =\frac{e^{_\mathrm{G}}\hbar}{2m_\mathrm{e}c}</math> | <math>\mu_\mathrm{B}^{_\mathrm{I}} =\frac{e^{_\mathrm{I}}\hbar}{2m_\mathrm{e}}</math> |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)