Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Gelfand representation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Statement of the commutative Gelfand–Naimark theorem === Let ''A'' be a commutative C*-algebra and let ''X'' be the spectrum of ''A''. Let :<math>\gamma:A \to C_0(X)</math> be the Gelfand representation defined above. '''Theorem'''. The Gelfand map γ is an isometric *-isomorphism from ''A'' onto ''C''<sub>0</sub>(''X''). See the Arveson reference below. The spectrum of a commutative C*-algebra can also be viewed as the set of all [[maximal ideal]]s ''m'' of ''A'', with the [[hull-kernel topology]]. (See the earlier remarks for the general, commutative Banach algebra case.) For any such ''m'' the quotient algebra ''A/m'' is one-dimensional (by the Gelfand-Mazur theorem), and therefore any ''a'' in ''A'' gives rise to a complex-valued function on ''Y''. In the case of C*-algebras with unit, the spectrum map gives rise to a contravariant [[functor]] from the category of commutative C*-algebras with unit and unit-preserving continuous *-homomorphisms, to the category of compact Hausdorff spaces and continuous maps. This functor is one half of a [[Equivalence of categories|contravariant equivalence]] between these two categories (its [[adjoint functor|adjoint]] being the functor that assigns to each compact Hausdorff space ''X'' the C*-algebra ''C''<sub>0</sub>(''X'')). In particular, given compact Hausdorff spaces ''X'' and ''Y'', then ''C''(''X'') is isomorphic to ''C''(''Y'') (as a C*-algebra) if and only if ''X'' is [[homeomorphic]] to ''Y''. The 'full' [[Gelfand–Naimark theorem]] is a result for arbitrary (abstract) [[noncommutative]] C*-algebras ''A'', which though not quite analogous to the Gelfand representation, does provide a concrete representation of ''A'' as an algebra of operators.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)