Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Generalized mean
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Geometric mean=== For any {{math|''q'' > 0}} and non-negative weights summing to 1, the following inequality holds: <math display="block">\left(\sum_{i=1}^n w_i x_i^{-q}\right)^{-1/q} \leq \prod_{i=1}^n x_i^{w_i} \leq \left(\sum_{i=1}^n w_i x_i^q\right)^{1/q}.</math> The proof follows from [[Jensen's inequality]], making use of the fact the [[logarithm]] is concave: <math display=block>\log \prod_{i=1}^n x_i^{w_i} = \sum_{i=1}^n w_i\log x_i \leq \log \sum_{i=1}^n w_i x_i.</math> By applying the [[exponential function]] to both sides and observing that as a strictly increasing function it preserves the sign of the inequality, we get <math display=block>\prod_{i=1}^n x_i^{w_i} \leq \sum_{i=1}^n w_i x_i.</math> Taking {{mvar|q}}-th powers of the {{mvar|x<sub>i</sub>}} yields <math display=block>\begin{align} &\prod_{i=1}^n x_i^{q{\cdot}w_i} \leq \sum_{i=1}^n w_i x_i^q \\ &\prod_{i=1}^n x_i^{w_i} \leq \left(\sum_{i=1}^n w_i x_i^q\right)^{1/q}.\end{align}</math> Thus, we are done for the inequality with positive {{mvar|q}}; the case for negatives is identical but for the swapped signs in the last step: <math display=block>\prod_{i=1}^n x_i^{-q{\cdot}w_i} \leq \sum_{i=1}^n w_i x_i^{-q}.</math> Of course, taking each side to the power of a negative number {{math|-1/''q''}} swaps the direction of the inequality. <math display=block>\prod_{i=1}^n x_i^{w_i} \geq \left(\sum_{i=1}^n w_i x_i^{-q}\right)^{-1/q}.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)