Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Geometric Brownian motion
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Extensions== In an attempt to make GBM more realistic as a model for stock prices, also in relation to the [[volatility smile]] problem, one can drop the assumption that the volatility (<math>\sigma</math>) is constant. If we assume that the volatility is a [[Deterministic system|deterministic]] function of the stock price and time, this is called a [[local volatility]] model. A straightforward extension of the Black Scholes GBM is a local volatility SDE whose distribution is a mixture of distributions of GBM, the lognormal mixture dynamics, resulting in a convex combination of Black Scholes prices for options.<ref name="musielarutkowski"/><ref>Fengler, M. R. (2005), Semiparametric modeling of implied volatility, Springer Verlag, Berlin. DOI https://doi.org/10.1007/3-540-30591-2</ref><ref>{{cite journal | title = Lognormal-mixture dynamics and calibration to market volatility smiles | first1 = Damiano | last1 = Brigo | author-link1 = Damiano Brigo | first2 = Fabio | last2 = Mercurio | author-link2 = Fabio Mercurio | pages = 427–446 | journal = International Journal of Theoretical and Applied Finance | volume = 5 | year = 2002 | issue = 4 | doi = 10.1142/S0219024902001511 }}</ref><ref>Brigo, D, Mercurio, F, Sartorelli, G. (2003). Alternative asset-price dynamics and volatility smile, QUANT FINANC, 2003, Vol: 3, Pages: 173 - 183, {{ISSN|1469-7688}}</ref> If instead we assume that the volatility has a randomness of its own—often described by a different equation driven by a different Brownian Motion—the model is called a [[stochastic volatility]] model, see for example the [[Heston model]].<ref>{{cite journal | title = A closed-form solution for options with stochastic volatility with applications to bond and currency options | first = Steven L. | last = Heston | author-link1 = Steven L. Heston | pages = 327–343 | journal = Review of Financial Studies | volume = 6 | issue = 2 | year = 1993 | jstor = 2962057 | doi = 10.1093/rfs/6.2.327| s2cid = 16091300 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)