Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Gerbe
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== C*-algebras === There are natural examples of Gerbes that arise from studying the algebra of compactly supported complex valued functions on a paracompact space <math>X</math><ref>{{cite arXiv |last1=Block |first1=Jonathan |last2=Daenzer |first2=Calder |date=2009-01-09 |title=Mukai duality for gerbes with connection |class=math.QA |eprint=0803.1529 }}</ref><sup>pg 3</sup>. Given a cover <math>\mathcal{U} = \{U_i\}</math> of <math>X</math> there is the Cech groupoid defined as<blockquote><math>\mathcal{G} = \left\{ \coprod_{i,j}U_{ij} \rightrightarrows \coprod U_i \right\} </math></blockquote>with source and target maps given by the inclusions<blockquote><math>\begin{align} s: U_{ij} \hookrightarrow U_j \\ t: U_{ij} \hookrightarrow U_i \end{align}</math></blockquote>and the space of composable arrows is just<blockquote><math>\coprod_{i,j,k}U_{ijk}</math></blockquote>Then a degree 2 cohomology class <math>\sigma \in H^2(X;U(1))</math> is just a map<blockquote><math>\sigma: \coprod U_{ijk} \to U(1)</math></blockquote>We can then form a non-commutative [[C*-algebra]] <math>C_c(\mathcal{G}(\sigma))</math>, which is associated to the set of compact supported complex valued functions of the space<blockquote><math>\mathcal{G}_1 = \coprod_{i,j}U_{ij}</math></blockquote>It has a non-commutative product given by<blockquote><math>a* b(x,i,k) := \sum_j a(x,i,j)b(x,j,k)\sigma(x,i,j,k)</math></blockquote>where the cohomology class <math>\sigma</math> twists the multiplication of the standard <math>C^*</math>-algebra product.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)