Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Green's function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Finding Green's functions== ===Units=== While it does not uniquely fix the form the Green's function will take, performing a [[dimensional analysis]] to find the units a Green's function must have is an important sanity check on any Green's function found through other means. A quick examination of the defining equation, <math display="block"> L G(x, s) = \delta(x - s), </math> shows that the units of <math>G</math> depend not only on the units of <math>L</math> but also on the number and units of the space of which the position vectors <math>x</math> and <math>s</math> are elements. This leads to the relationship: <math display="block"> [[G]] = [[L]]^{-1} [[d x]]^{-1}, </math> where <math>[[G]]</math> is defined as, "the physical units of {{nowrap|<math>G</math>"}}{{Explain | reason=What does this mean? This is ungoogleable and without a description this section is meaningless. | date = October 2024}}, and <math>dx</math> is the [[volume element]] of the space (or [[spacetime]]). For example, if <math>L = \partial_t^2</math> and time is the only variable then: <math display="block">\begin{align}[] [[L]] &= [[\text{time}]]^{-2}, \\[1ex] [[dx]] &= [[\text{time}]],\ \text{and} \\[1ex] [[G]] &= [[\text{time}]]. \end{align}</math> If {{nowrap|<math>L = \square = \tfrac{1}{c^2}\partial_t^2 - \nabla^2</math>,}} the [[d'Alembert operator]], and space has 3 dimensions then: <math display="block">\begin{align}[] [[L]] &= [[\text{length}]]^{-2}, \\[1ex] [[dx]] &= [[\text{time}]] [[\text{length}]]^3,\ \text{and} \\[1ex] [[G]] &= [[\text{time}]]^{-1} [[\text{length}]]^{-1}. \end{align}</math> ===Eigenvalue expansions=== If a [[differential operator]] {{math|''L''}} admits a set of [[eigenvectors]] {{math|Ψ<sub>''n''</sub>(''x'')}} (i.e., a set of functions {{math|Ψ<sub>''n''</sub>}} and scalars {{math|''λ''<sub>''n''</sub>}} such that {{math|1=''L''Ψ<sub>''n''</sub> = ''λ''<sub>''n''</sub> Ψ<sub>''n''</sub>}} ) that is complete, then it is possible to construct a Green's function from these eigenvectors and [[eigenvalues]]. "Complete" means that the set of functions {{math|{{mset|Ψ<sub>''n''</sub>}}}} satisfies the following [[completeness relation]], <math display="block">\delta(x-x') = \sum_{n=0}^\infty \Psi_n^\dagger(x') \Psi_n(x).</math> Then the following holds, {{Equation box 1 |indent =: |equation = <math>G(x, x') = \sum_{n=0}^\infty \dfrac{\Psi_n^\dagger(x') \Psi_n(x)}{\lambda_n},</math> |cellpadding= 6 |border |border colour = #0073CF |bgcolor=#F9FFF7}} where <math>\dagger</math> represents complex conjugation. Applying the operator {{math|''L''}} to each side of this equation results in the completeness relation, which was assumed. The general study of Green's function written in the above form, and its relationship to the [[function space]]s formed by the eigenvectors, is known as [[Fredholm theory]]. There are several other methods for finding Green's functions, including the [[method of images]], [[separation of variables]], and [[Laplace transform]]s.<ref>{{cite book |first1=K.D. |last1=Cole |first2=J.V. |last2=Beck |first3=A. |last3=Haji-Sheikh |first4=B. |last4=Litkouhi |chapter=Methods for obtaining Green's functions |title=Heat Conduction Using Green's Functions |publisher=Taylor and Francis |year=2011 |pages=101–148 |isbn=978-1-4398-1354-6}}</ref> ===Combining Green's functions=== If the differential operator <math>L</math> can be factored as <math>L = L_1 L_2</math> then the Green's function of <math>L</math> can be constructed from the Green's functions for <math>L_1</math> and {{nowrap|<math>L_2</math>:}} <math display="block"> G(x, s) = \int G_2(x, s_1) \, G_1(s_1, s) \, ds_1. </math> The above identity follows immediately from taking <math>G(x, s)</math> to be the representation of the right operator inverse of {{nowrap|<math>L</math>,}} analogous to how for the [[Invertible matrix#Other properties|invertible linear operator]] {{nowrap|<math>C</math>,}} defined by {{nowrap|<math>C = (AB)^{-1} = B^{-1} A^{-1}</math>,}} is represented by its matrix elements {{nowrap|<math>C_{i,j}</math>.}} A further identity follows for differential operators that are scalar polynomials of the derivative, {{nowrap|<math>L = P_N(\partial_x)</math>.}} The [[fundamental theorem of algebra]], combined with the fact that <math>\partial_x</math> [[Commutative property|commutes with itself]], guarantees that the polynomial can be factored, putting <math>L</math> in the form: <math display="block"> L = \prod_{i=1}^N \left(\partial_x - z_i\right),</math> where <math>z_i</math> are the zeros of {{nowrap|<math>P_N(z)</math>.}} Taking the [[Fourier transform]] of <math>L G(x, s) = \delta(x - s)</math> with respect to both <math>x</math> and <math>s</math> gives: <math display="block"> \widehat{G}(k_x, k_s) = \frac{\delta(k_x - k_s)}{\prod_{i=1}^N (ik_x - z_i)}. </math> The fraction can then be split into a sum using a [[partial fraction decomposition]] before Fourier transforming back to <math>x</math> and <math>s</math> space. This process yields identities that relate integrals of Green's functions and sums of the same. For example, if <math>L = \left(\partial_x + \gamma\right) \left(\partial_x + \alpha\right)^2</math> then one form for its Green's function is: <math display="block"> \begin{align} G(x, s) & = \frac{1}{\left(\gamma - \alpha\right)^2}\Theta(x-s) e^{-\gamma(x-s)} - \frac{1}{\left(\gamma - \alpha\right)^2}\Theta(x-s) e^{-\alpha(x-s)} + \frac{1}{\gamma-\alpha} \Theta(x - s) \left(x - s\right) e^{-\alpha(x-s)} \\[1ex] & = \int \Theta(x - s_1) \left(x - s_1\right) e^{-\alpha(x-s_1)} \Theta(s_1 - s) e^{-\gamma (s_1 - s)} \, ds_1. \end{align} </math> While the example presented is tractable analytically, it illustrates a process that works when the integral is not trivial (for example, when <math>\nabla^2</math> is the operator in the polynomial). ===Table of Green's functions=== {{Disputed section|Dimensional inconsistencies and wrong scaling|date=April 2025}} The following table gives an overview of Green's functions of frequently appearing differential operators, where {{nowrap|<math display="inline"> r = \sqrt{x^2 + y^2 + z^2}</math>,}} {{nowrap|<math display="inline"> \rho = \sqrt{x^2 + y^2}</math>,}} <math display="inline"> \Theta(t)</math> is the [[Heaviside step function]], <math display="inline"> J_\nu(z)</math> is a [[Bessel function]], <math display="inline"> I_\nu(z)</math> is a [[modified Bessel function of the first kind]], and <math display="inline"> K_\nu(z)</math> is a [[modified Bessel function of the second kind]].<ref>some examples taken from {{cite book | last = Schulz | first = Hermann | title = Physik mit Bleistift: das analytische Handwerkszeug des Naturwissenschaftlers | date = 2001 | publisher = Deutsch | isbn = 978-3-8171-1661-4 | edition = 4. Aufl | location = Frankfurt am Main}}</ref> Where time ({{mvar|t}}) appears in the first column, the retarded (causal) Green's function is listed. {| class="wikitable" |- ! Differential operator {{math|''L''}} !! Green's function {{mvar|G}} !! Example of application |- | <math>\partial_t^{n+1}</math> || <math>\frac{t^n}{n!} \Theta(t)</math> || |- | <math>\partial_t + \gamma </math> || <math>\Theta(t) e^{-\gamma t}</math> || |- | <math>\left(\partial_t + \gamma \right)^2</math> || <math>\Theta(t)t e^{-\gamma t}</math> || |- | <math>\partial_t^2 + 2\gamma\partial_t + \omega_0^2</math> where <math> \gamma < \omega_0 </math> || <math>\Theta(t) e^{-\gamma t} \, \frac{\sin(\omega t)}{\omega}</math> with <math>\omega=\sqrt{\omega_0^2-\gamma^2}</math>|| [[Harmonic oscillator#Damped harmonic oscillator|1D underdamped harmonic oscillator]] |- | <math>\partial_t^2 + 2\gamma\partial_t + \omega_0^2</math> where <math> \gamma > \omega_0 </math> || <math>\Theta(t) e^{-\gamma t} \, \frac{\sinh(\omega t)}{\omega}</math> with <math>\omega = \sqrt{\gamma^2-\omega_0^2}</math>|| 1D overdamped harmonic oscillator |- | <math>\partial_t^2 + 2\gamma\partial_t + \omega_0^2</math> where <math> \gamma = \omega_0 </math> || <math>\Theta(t) e^{-\gamma t} t</math> || 1D critically damped harmonic oscillator |- | 1D Laplace operator <math> \frac {d^2}{dx^2} </math> | <math> \left(x - s\right) \Theta(x-s) + x\alpha (s) + \beta(s) </math> | 1D Poisson equation |- | [[Laplace operator#Two dimensions|2D Laplace operator]] <math>\nabla^2_{\text{2D}} = \partial_x^2 + \partial_y^2</math> || <math>\frac{1}{2 \pi}\ln \rho </math> with <math>\rho=\sqrt{x^2+y^2}</math>|| 2D Poisson equation |- | [[Laplace operator#Three dimensions| 3D Laplace operator]] <math>\nabla^2_{\text{3D}} = \partial_x^2 + \partial_y^2 + \partial_z^2</math> || <math>-\frac{1}{4 \pi r}</math> with <math> r = \sqrt{x^2 + y^2 + z^2} </math> || [[Poisson equation]] |- | [[Helmholtz equation|Helmholtz operator]] <math>\nabla^2_{\text{3D}} + k^2</math> || <math>\frac{-e^{-ikr}}{4 \pi r} = i \sqrt{\frac{k}{32 \pi r}} H^{(2)}_{1/2}(kr) = i \frac{k}{4\pi} \, h^{(2)}_{0}(kr)</math> {{br}} where <math>H_\alpha^{(2)}</math> is the [[Hankel function of the second kind]], and <math>h_0^{(2)}</math> is the [[spherical Hankel function of the second kind]] || stationary 3D [[Schrödinger equation]] for [[free particle]] |- |Divergence operator <math>\nabla \cdot \mathbf{v}</math> |<math>\frac{1}{4 \pi} \frac{\mathbf{x} - \mathbf{x}_0}{\left\|\mathbf{x} - \mathbf{x}_0\right\|^3} </math> | |- | <math>\nabla^2 - k^2</math> in <math>n</math> dimensions || <math>- \left(2\pi\right)^{-n/2} \left(\frac{k}{r}\right)^{n/2-1} K_{n/2-1}(kr)</math>|| [[Yukawa potential]], [[Propagator#Feynman propagator|Feynman propagator]], [[Screened Poisson equation]] |- | <math>\partial_t^2 - c^2\partial_x^2</math>|| <math>\frac{1}{2c} \Theta(ct - x)</math>|| 1D [[wave equation]] |- | <math>\partial_t^2 - c^2\,\nabla^2_{\text{2D}}</math>|| <math>\frac{\Theta(ct - \rho)}{2\pi c\sqrt{c^2t^2 - \rho^2}}</math>|| 2D [[wave equation]] |- | [[D'Alembert operator]] <math>\square = \frac{1}{c^2}\partial_t^2 - \nabla^2_{\text{3D}}</math>|| <math>\frac{1}{4 \pi r} \delta\left(t-\frac{r}{c}\right)</math>|| 3D [[wave equation]] |- | <math>\partial_t - k\partial_x^2</math>|| <math>\left(\frac{1}{4\pi kt}\right)^{1/2} \Theta(t) e^{-x^2/4kt}</math>|| 1D [[diffusion]] |- | <math>\partial_t - k\,\nabla^2_{\text{2D}}</math>|| <math>\left(\frac{1}{4\pi kt}\right) \Theta(t) e^{-\rho^2/4kt}</math>|| 2D [[diffusion]] |- | <math>\partial_t - k\,\nabla^2_{\text{3D}}</math>|| <math>\left(\frac{1}{4\pi kt}\right)^{3/2} \Theta(t) e^{-r^2/4kt}</math>|| 3D [[diffusion]] |- | <math>\frac{1}{c^2}\partial_t^2 - \partial_x^2+\mu^2</math>|| <math>\begin{align} &\tfrac{1}{2} \left(1-\sin{\mu ct}\right) \left[\delta(ct-x) + \delta(ct+x)\right] \\[0.5ex] &+\tfrac{1}{2} \mu \Theta(ct - |x|) J_0(\mu u) \end{align} </math> {{br}} with <math> u = \sqrt{c^2 t^2 - x^2}</math>|| 1D [[Klein–Gordon equation]] |- | <math>\frac{1}{c^2}\partial_t^2 - \nabla^2_{\text{2D}}+\mu^2</math>|| <math>\begin{align} &\frac{\delta(ct-\rho)}{4\pi\rho} \left(1 + \cos(\mu ct)\right) \\[0.5ex] &+ \frac{\mu^2\Theta(ct - \rho)}{4\pi} \operatorname{sinc}(\mu u) \end{align}</math> {{br}} with <math> u=\sqrt{c^2t^2-\rho^2} </math>|| 2D [[Klein–Gordon equation]] |- | <math>\square + \mu^2</math>|| <math>\frac{1}{4\pi r} \delta{\left(t - \frac{r}{c}\right)} + \frac{\mu c}{4\pi u} \Theta(ct - r) J_1{\left(\mu u\right)}</math> with <math> u = \sqrt{c^2t^2-r^2}</math>|| 3D [[Klein–Gordon equation]] |- | <math>\partial_t^2 + 2\gamma\partial_t - c^2\partial_x^2</math> | <math>\begin{align} &\frac{e^{-\gamma t}}{2} \left[ \delta(ct - x) + \delta(ct + x) \right] \\[0.5ex] &+ \frac{e^{-\gamma t}}{2} \Theta(ct - |x|) \left(k I_0(k u) + \frac{\gamma t}{u} I_1(k u)\right) \end{align}</math> {{br}} with <math> u=\sqrt{c^2t^2-x^2}</math> and <math>k = \gamma / c </math>|| [[telegrapher's equation]] |- | <math>\partial_t^2 + 2\gamma\partial_t - c^2\,\nabla^2_{\text{2D}}</math> | <math>\begin{align} &\frac{e^{-\gamma t}}{4\pi\rho} \delta(ct-\rho) \left(1 + e^{-\gamma t} + 3\gamma t\right) \\ &+ \frac{e^{-\gamma t}}{4\pi u^2} \Theta(ct - \rho) \left(\frac{k u^2 - 3 c t}{c u} \sinh\left(k u\right) + 3\gamma t \cosh\left(k u\right)\right) \end{align}</math> {{br}} with <math> u = \sqrt{c^2 t^2 - \rho^2}</math> and <math>k = \gamma / c</math>|| 2D [[relativistic heat conduction]] |- | <math>\partial_t^2 + 2\gamma\partial_t - c^2\,\nabla^2_{\text{3D}}</math> | <math>\begin{align} &\frac{e^{-\gamma t}}{20\pi r^2} \delta(ct - r) \left(8 - 3e^{-\gamma t} + 2\gamma t + 4\gamma^2 t^2\right) \\[0.5ex] &+ \frac{k e^{-\gamma t}}{20 \pi u} \Theta(ct - r) \left(k I_1(k u) + \frac{4 \gamma t}{u} I_2(k u)\right) \end{align}</math> {{br}} with <math> u = \sqrt{c^2 t^2 - r^2}</math> and <math>k = \gamma / c</math>|| 3D [[relativistic heat conduction]] |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)