Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Group theory
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Groups with additional structure === An important elaboration of the concept of a group occurs if ''G'' is endowed with additional structure, notably, of a [[topological space]], [[differentiable manifold]], or [[algebraic variety]]. If the multiplication and inversion of the group are compatible with this structure, that is, they are [[continuous map|continuous]], [[smooth map|smooth]] or [[Regular map (algebraic geometry)|regular]] (in the sense of algebraic geometry) maps, then ''G'' is a [[topological group]], a [[Lie group]], or an [[algebraic group]].<ref>This process of imposing extra structure has been formalized through the notion of a [[group object]] in a suitable [[category (mathematics)|category]]. Thus Lie groups are group objects in the category of differentiable manifolds and affine algebraic groups are group objects in the category of affine algebraic varieties.</ref> The presence of extra structure relates these types of groups with other mathematical disciplines and means that more tools are available in their study. Topological groups form a natural domain for [[abstract harmonic analysis]], whereas [[Lie group]]s (frequently realized as transformation groups) are the mainstays of [[differential geometry]] and unitary [[representation theory]]. Certain classification questions that cannot be solved in general can be approached and resolved for special subclasses of groups. Thus, [[compact Lie group|compact connected Lie groups]] have been completely classified. There is a fruitful relation between infinite abstract groups and topological groups: whenever a group ''Ξ'' can be realized as a [[lattice (discrete subgroup)|lattice]] in a topological group ''G'', the geometry and analysis pertaining to ''G'' yield important results about ''Ξ''. A comparatively recent trend in the theory of finite groups exploits their connections with compact topological groups ([[profinite group]]s): for example, a single [[powerful p-group|''p''-adic analytic group]] ''G'' has a family of quotients which are finite [[p-group|''p''-groups]] of various orders, and properties of ''G'' translate into the properties of its finite quotients.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)