Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hankel transform
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Relation to the multidimensional Fourier transform == The Hankel transform appears when one writes the multidimensional Fourier transform in [[hyperspherical coordinates]], which is the reason why the Hankel transform often appears in physical problems with cylindrical or spherical symmetry. Consider a function <math>f(\mathbf{r})</math> of a <math display="inline">d</math>-dimensional vector {{math|'''r'''}}. Its <math display="inline">d</math>-dimensional Fourier transform is defined as<math display="block">F(\mathbf{k}) = \int_{\R^d} f(\mathbf{r}) e^{-i\mathbf{k} \cdot \mathbf{r}} \,\mathrm{d}\mathbf{r}.</math>To rewrite it in hyperspherical coordinates, we can use the decomposition of a plane wave into <math display="inline">d</math>-dimensional hyperspherical harmonics <math>Y_{l,m}</math>:<ref>{{Cite book |last=Avery, James Emil |title=Hyperspherical harmonics and their physical applications |isbn=978-981-322-930-3 |oclc=1013827621}}</ref><math display="block">e^{-i\mathbf{k} \cdot \mathbf{r}} = (2 \pi)^{d/2} (kr)^{1-d/2}\sum_{l = 0}^{+\infty} (-i)^{l} J_{d/2-1+l}(kr)\sum_{m} Y_{l,m}(\Omega_{\mathbf{k}}) Y^{*}_{l,m}(\Omega_{\mathbf{r}}),</math>where <math display="inline">\Omega_{\mathbf{r}}</math> and <math display="inline">\Omega_{\mathbf{k}}</math> are the sets of all hyperspherical angles in the <math>\mathbf{r}</math>-space and <math>\mathbf{k}</math>-space. This gives the following expression for the <math display="inline">d</math>-dimensional Fourier transform in hyperspherical coordinates:<math display="block">F(\mathbf{k}) = (2 \pi)^{d/2} k^{1-d/2} \sum_{l = 0}^{+\infty} (-i)^{l} \sum_{m}Y_{l,m}(\Omega_{\mathbf{k}}) \int_{0}^{+\infty}J_{d/2-1+l}(kr)r^{d/2}\mathrm{d}r \int f(\mathbf{r}) Y_{l,m}^{*}(\Omega_{\mathbf{r}}) \mathrm{d}\Omega_{\mathbf{r}}. </math>If we expand <math>f(\mathbf{r})</math> and <math>F(\mathbf{k})</math> in hyperspherical harmonics:<math display="block">f(\mathbf{r}) = \sum_{l = 0}^{+\infty} \sum_{m}f_{l,m}(r)Y_{l,m}(\Omega_{\mathbf{r}}),\quad F(\mathbf{k}) = \sum_{l = 0}^{+\infty} \sum_{m} F_{l,m}(k) Y_{l,m}(\Omega_{\mathbf{k}}), </math>the Fourier transform in hyperspherical coordinates simplifies to<math display="block">k^{d/2-1}F_{l,m}(k) = (2 \pi)^{d/2} (-i)^{l} \int_{0}^{+\infty}r^{d/2-1}f_{l,m}(r)J_{d/2-1+l}(kr)r\mathrm{d}r. </math>This means that functions with angular dependence in form of a hyperspherical harmonic retain it upon the multidimensional Fourier transform, while the radial part undergoes the Hankel transform (up to some extra factors like <math display="inline">r^{d/2-1}</math>). === Special cases === ==== Fourier transform in two dimensions ==== If a two-dimensional function {{math|''f''('''r''')}} is expanded in a [[multipole expansion|multipole series]], :<math>f(r, \theta) = \sum_{m=-\infty}^\infty f_m(r) e^{im\theta_{\mathbf{r}}},</math> then its two-dimensional Fourier transform is given by<math display="block">F(\mathbf k) = 2\pi \sum_m i^{-m} e^{im\theta_{\mathbf{k}}} F_m(k),</math>where<math display="block">F_m(k) = \int_0^\infty f_m(r) J_m(kr) \,r\,\mathrm{d}r</math>is the <math display="inline">m</math>-th order Hankel transform of <math>f_m(r)</math> (in this case <math display="inline">m</math> plays the role of the angular momentum, which was denoted by <math display="inline">l</math> in the previous section). ==== Fourier transform in three dimensions ==== If a three-dimensional function {{math|''f''('''r''')}} is expanded in a [[multipole expansion|multipole series]] over [[spherical harmonics]], :<math>f(r,\theta_{\mathbf{r}},\varphi_{\mathbf{r}}) = \sum_{l = 0}^{+\infty} \sum_{m=-l}^{+l}f_{l,m}(r)Y_{l,m}(\theta_{\mathbf{r}},\varphi_{\mathbf{r}}),</math> then its three-dimensional Fourier transform is given by<math display="block">F(k,\theta_{\mathbf{k}},\varphi_{\mathbf{k}}) = (2 \pi)^{3/2} \sum_{l = 0}^{+\infty} (-i)^{l} \sum_{m=-l}^{+l} F_{l,m}(k) Y_{l,m}(\theta_{\mathbf{k}},\varphi_{\mathbf{k}}),</math>where<math display="block">\sqrt{k} F_{l,m}(k) = \int_{0}^{+\infty}\sqrt{r} f_{l,m}(r)J_{l+1/2}(kr)r\mathrm{d}r.</math>is the Hankel transform of <math>\sqrt{r} f_{l,m}(r)</math> of order <math display="inline">(l+1/2)</math>. This kind of Hankel transform of half-integer order is also known as the spherical Bessel transform. ==== Fourier transform in {{math|''d''}} dimensions (radially symmetric case) ==== If a {{math|''d''}}-dimensional function {{math|''f''(''r'')}} does not depend on angular coordinates, then its {{math|''d''}}-dimensional Fourier transform {{math|''F''(''k'')}} also does not depend on angular coordinates and is given by<ref>{{cite web|url=http://math.arizona.edu/~faris/methodsweb/hankel.pdf|title=Radial functions and the Fourier transform: Notes for Math 583A, Fall 2008|last=Faris|first=William G.|date=2008-12-06|website=University of Arizona, Department of Mathematics|accessdate=2015-04-25}}</ref><math display="block">k^{d/2-1}F(k) = (2 \pi)^{d/2} \int_{0}^{+\infty}r^{d/2-1}f(r)J_{d/2-1}(kr)r\mathrm{d}r.</math>which is the Hankel transform of <math>r^{d/2-1}f(r)</math> of order <math display="inline">(d/2-1)</math> up to a factor of <math>(2 \pi)^{d/2} </math>. ====2D functions inside a limited radius==== If a two-dimensional function {{math|''f''('''r''')}} is expanded in a [[multipole expansion|multipole series]] and the expansion coefficients {{math|''f<sub>m</sub>''}} are sufficiently smooth near the origin and zero outside a radius {{mvar|R}}, the radial part {{math|''f''(''r'')/''r<sup>m</sup>''}} may be expanded into a [[power series]] of {{math|1 β (''r''/''R'')^2}}: :<math>f_m(r)= r^m \sum_{t \ge 0} f_{m,t} \left(1 - \left(\tfrac{r}{R}\right)^2 \right)^t, \quad 0 \le r \le R,</math> such that the two-dimensional Fourier transform of {{math|''f''('''r''')}} becomes :<math>\begin{align} F(\mathbf k) &= 2\pi\sum_m i^{-m} e^{i m\theta_k} \sum_t f_{m,t} \int_0^R r^m \left(1 - \left(\tfrac{r}{R}\right)^2 \right)^t J_m(kr) r\,\mathrm{d}r && \\ &= 2\pi\sum_m i^{-m} e^{i m\theta_k} R^{m+2} \sum_t f_{m,t} \int_0^1 x^{m+1} (1-x^2)^t J_m(kxR) \,\mathrm{d}x && (x = \tfrac{r}{R})\\ &= 2\pi\sum_m i^{-m} e^{i m\theta_k} R^{m+2} \sum_t f_{m,t} \frac{t!2^t}{(kR)^{1+t}} J_{m+t+1}(kR), \end{align}</math> where the last equality follows from Β§6.567.1 of.<ref>{{cite book |last1=Gradshteyn|first1=I. S. |last2=Ryzhik|first2=I. M. |editor1-last=Zwillinger|editor1-first=Daniel |title=Table of Integrals, Series, and Products |date=2015 |publisher=Academic Press |isbn=978-0-12-384933-5 |edition=Eighth |page=687}}</ref> The expansion coefficients {{math|''f<sub>m,t</sub>''}} are accessible with [[discrete Fourier transform]] techniques:<ref>{{cite journal |first1=JosΓ© D. |last1=Secada |title=Numerical evaluation of the Hankel transform |journal=Comput. Phys. Commun. |volume=116 |issue=2β3 |pages=278β294 |bibcode=1999CoPhC.116..278S |year=1999 |doi = 10.1016/S0010-4655(98)00108-8 }}</ref> if the radial distance is scaled with :<math>r/R\equiv \sin\theta,\quad 1-(r/R)^2 = \cos^2\theta,</math> the Fourier-Chebyshev series coefficients {{math|''g''}} emerge as :<math>f(r)\equiv r^m \sum_j g_{m,j} \cos(j\theta)= r^m\sum_jg_{m,j} T_j(\cos\theta).</math> Using the re-expansion :<math> \cos(j\theta) = 2^{j-1}\cos^j\theta-\frac{j}{1}2^{j-3}\cos^{j-2}\theta +\frac{j}{2}\binom{j-3}{1}2^{j-5}\cos^{j-4}\theta - \frac{j}{3}\binom{j-4}{2}2^{j-7}\cos^{j-6}\theta + \cdots </math> yields {{math|''f''<sub>''m,t''</sub>}} expressed as sums of {{math|''g''<sub>''m,j''</sub>}}. This is one flavor of fast Hankel transform techniques.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)