Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Harmonic number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Generalizations== ===Generalized harmonic numbers=== The ''n''th '''generalized harmonic number''' of order ''m'' is given by <math display="block">H_{n,m}=\sum_{k=1}^n \frac{1}{k^m}.</math> (In some sources, this may also be denoted by <math display="inline">H_n^{(m)}</math> or <math display="inline">H_m(n).</math>) The special case ''m'' = 0 gives <math>H_{n,0}= n.</math> The special case ''m'' = 1 reduces to the usual harmonic number: <math display="block">H_{n, 1} = H_n = \sum_{k=1}^n \frac{1}{k}.</math> The limit of <math display="inline">H_{n, m}</math> as {{math|''n'' β β}} is finite if {{math|''m'' > 1}}, with the generalized harmonic number bounded by and converging to the [[Riemann zeta function]] <math display="block">\lim_{n\rightarrow \infty} H_{n,m} = \zeta(m).</math> The smallest natural number ''k'' such that ''k<sup>n</sup>'' does not divide the denominator of generalized harmonic number ''H''(''k'', ''n'') nor the denominator of alternating generalized harmonic number ''Hβ²''(''k'', ''n'') is, for ''n''=1, 2, ... : :77, 20, 94556602, 42, 444, 20, 104, 42, 76, 20, 77, 110, 3504, 20, 903, 42, 1107, 20, 104, 42, 77, 20, 2948, 110, 136, 20, 76, 42, 903, 20, 77, 42, 268, 20, 7004, 110, 1752, 20, 19203, 42, 77, 20, 104, 42, 76, 20, 370, 110, 1107, 20, ... {{OEIS|id=A128670}} The related sum <math>\sum_{k=1}^n k^m</math> occurs in the study of [[Bernoulli number]]s; the harmonic numbers also appear in the study of [[Stirling number]]s. Some integrals of generalized harmonic numbers are <math display="block">\int_0^a H_{x,2} \, dx = a \frac {\pi^2}{6}-H_{a}</math> and <math display="block">\int_0^a H_{x,3} \, dx = a A - \frac {1}{2} H_{a,2},</math> where ''A'' is [[ApΓ©ry's constant]] ''ΞΆ''(3), and <math display="block">\sum_{k=1}^n H_{k,m}=(n+1)H_{n,m}- H_{n,m-1} \text{ for } m \geq 0 .</math> Every generalized harmonic number of order ''m'' can be written as a function of harmonic numbers of order <math>m-1</math> using <math display="block">H_{n,m} = \sum_{k=1}^{n-1} \frac {H_{k,m-1}}{k(k+1)} + \frac {H_{n,m-1}}{n} </math> for example: <math>H_{4,3} = \frac {H_{1,2}}{1 \cdot 2} + \frac {H_{2,2}}{2 \cdot 3} + \frac {H_{3,2}}{3 \cdot 4} + \frac {H_{4,2}}{4} </math> A [[generating function]] for the generalized harmonic numbers is <math display="block">\sum_{n=1}^\infty z^n H_{n,m} = \frac {\operatorname{Li}_m(z)}{1-z},</math> where <math>\operatorname{Li}_m(z)</math> is the [[polylogarithm]], and {{math|{{mabs|''z''}} < 1}}. The generating function given above for {{math|1=''m'' = 1}} is a special case of this formula. A '''fractional argument for generalized harmonic numbers''' can be introduced as follows: For every <math>p,q>0</math> integer, and <math>m>1</math> integer or not, we have from polygamma functions: <math display="block">H_{q/p,m}=\zeta(m)-p^m\sum_{k=1}^\infty \frac{1}{(q+pk)^m}</math> where <math>\zeta(m)</math> is the [[Riemann zeta function]]. The relevant recurrence relation is <math display="block">H_{a,m}=H_{a-1,m}+\frac{1}{a^m}.</math> Some special values are<math display="block">\begin{align} H_{\frac{1}{4},2} &= 16-\tfrac{5}{6}\pi^2 -8G\\ H_{\frac{1}{2},2} &= 4-\frac{\pi^2}{3} \\ H_{\frac{3}{4},2} &= \frac{16}{9}-\frac{5}{6}\pi^2 + 8G \\ H_{\frac{1}{4},3} &= 64-\pi^3-27\zeta(3) \\ H_{\frac{1}{2},3} & =8-6\zeta(3) \\ H_{\frac{3}{4},3} &= \left(\frac{4}{3}\right)^3+\pi^3 -27\zeta(3) \end{align}</math>where ''G'' is [[Catalan's constant]]. In the special case that <math>p = 1</math>, we get <math display="block">H_{n,m}=\zeta(m, 1) - \zeta(m, n+1),</math> where <math>\zeta(m, n)</math> is the [[Hurwitz zeta function]]. This relationship is used to calculate harmonic numbers numerically. ===Multiplication formulas=== The [[multiplication theorem]] applies to harmonic numbers. Using [[polygamma]] functions, we obtain <math display="block">\begin{align} H_{2x} & =\frac{1}{2}\left(H_x+H_{x-\frac{1}{2}}\right)+\ln 2 \\ H_{3x} &= \frac{1}{3}\left(H_x+H_{x-\frac{1}{3}}+H_{x-\frac{2}{3}}\right)+\ln 3, \end{align}</math> or, more generally, <math display="block">H_{nx}=\frac{1}{n}\left(H_x+H_{x-\frac{1}{n}}+H_{x-\frac{2}{n}}+\cdots +H_{x-\frac{n-1}{n}} \right) + \ln n.</math> For generalized harmonic numbers, we have <math display="block">\begin{align} H_{2x,2} &= \frac{1}{2}\left(\zeta(2)+\frac{1}{2}\left(H_{x,2}+H_{x-\frac{1}{2},2}\right)\right) \\ H_{3x,2} &= \frac{1}{9}\left(6\zeta(2)+H_{x,2}+H_{x-\frac{1}{3},2}+H_{x-\frac{2}{3},2}\right), \end{align}</math> where <math>\zeta(n)</math> is the [[Riemann zeta function]]. ===Hyperharmonic numbers=== The next generalization was discussed by [[John Horton Conway|J. H. Conway]] and [[Richard K. Guy|R. K. Guy]] in their 1995 book ''[[The Book of Numbers (maths)|The Book of Numbers]]''.<ref name=ConwayGuy/>{{rp|258}} Let <math display="block"> H_n^{(0)} = \frac1n. </math> Then the nth [[hyperharmonic number]] of order ''r'' (''r>0'') is defined recursively as <math display="block"> H_n^{(r)} = \sum_{k=1}^n H_k^{(r-1)}. </math> In particular, <math>H_n^{(1)}</math> is the ordinary harmonic number <math>H_n</math>. === Roman Harmonic numbers === The [[Roman Harmonic numbers]],<ref>{{Cite journal |last=Sesma |first=J. |date=2017 |title=The Roman harmonic numbers revisited |url=http://dx.doi.org/10.1016/j.jnt.2017.05.009 |journal=Journal of Number Theory |volume=180 |pages=544β565 |doi=10.1016/j.jnt.2017.05.009 |issn=0022-314X|arxiv=1702.03718 }}</ref> named after [[Steven Roman]], were introduced by [[Daniel E. Loeb|Daniel Loeb]] and [[Gian-Carlo Rota]] in the context of a generalization of [[umbral calculus]] with logarithms.<ref>{{Cite journal |last1=Loeb |first1=Daniel E |last2=Rota |first2=Gian-Carlo |date=1989 |title=Formal power series of logarithmic type |journal=Advances in Mathematics |volume=75 |issue=1 |pages=1β118 |doi=10.1016/0001-8708(89)90079-0 |issn=0001-8708|doi-access=free }}</ref> There are many possible definitions, but one of them, for <math>n,k \geq 0</math>, is<math display="block"> c_n^{(0)} = 1, </math>and<math display="block"> c_n^{(k+1)} = \sum_{i=1}^n\frac{c_i^{(k)}}{i}. </math>Of course,<math display="block"> c_n^{(1)} = H_n. </math> If <math>n \neq 0</math>, they satisfy<math display="block"> c_n^{(k+1)} - \frac{c_n^{(k)}}{n} = c_{n-1}^{(k+1)}. </math>Closed form formulas are<math display="block"> c_n^{(k)} = n! (-1)^k s(-n,k), </math>where <math>s(-n,k)</math> is [[Stirling numbers of the first kind]] generalized to negative first argument, and<math display="block"> c_n^{(k)} = \sum_{j=1}^n \binom{n}{j} \frac{(-1)^{j-1}}{j^k}, </math>which was found by [[Donald Knuth]]. In fact, these numbers were defined in a more general manner using Roman numbers and [[Roman factorials]], that include negative values for <math>n</math>. This generalization was useful in their study to define [[Harmonic logarithms]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)