Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Heptagon
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Diagonals and heptagonal triangle=== {{main|Heptagonal triangle}} [[File:Heptagrams.svg|thumb|100px|''a''=red, ''b''=blue, ''c''=green lines]] The regular heptagon's side ''a'', shorter [[diagonal#Polygons|diagonal]] ''b'', and longer diagonal ''c'', with ''a''<''b''<''c'', satisfy<ref name=Altintas>Abdilkadir Altintas, "Some Collinearities in the Heptagonal Triangle", ''[[Forum Geometricorum]]'' 16, 2016, 249β256.http://forumgeom.fau.edu/FG2016volume16/FG201630.pdf</ref>{{rp|Lemma 1}} :<math>a^2=c(c-b),</math> :<math>b^2 =a(c+a),</math> :<math>c^2 =b(a+b),</math> :<math>\frac{1}{a}=\frac{1}{b}+\frac{1}{c}</math> (the [[optic equation]]) and hence :<math> ab+ac=bc,</math> and<ref name=Altintas/>{{rp|Coro. 2}} :<math>b^3+2b^2c-bc^2-c^3=0, </math> :<math>c^3-2c^2a-ca^2+a^3=0, </math> :<math>a^3-2a^2b-ab^2+b^3=0,</math> Thus β''b''/''c'', ''c''/''a'', and ''a''/''b'' all satisfy the [[cubic equation]] <math>t^3-2t^2-t + 1=0.</math> However, no [[algebraic expression]]s with purely real terms exist for the solutions of this equation, because it is an example of [[casus irreducibilis]]. The approximate lengths of the diagonals in terms of the side of the regular heptagon are given by :<math>b\approx 1.80193\cdot a, \qquad c\approx 2.24698\cdot a.</math> We also have<ref>Leon Bankoff and Jack Garfunkel, "The heptagonal triangle", ''[[Mathematics Magazine]]'' 46 (1), January 1973, 7β19.</ref> :<math>b^2-a^2=ac,</math> :<math>c^2-b^2=ab,</math> :<math>a^2-c^2=-bc,</math> and :<math>\frac{b^2}{a^2}+\frac{c^2}{b^2}+\frac{a^2}{c^2}=5.</math> A [[heptagonal triangle]] has [[vertex (geometry)|vertices]] coinciding with the first, second, and fourth vertices of a regular heptagon (from an arbitrary starting vertex) and angles <math>\pi/7, 2\pi/7,</math> and <math>4\pi/7.</math> Thus its sides coincide with one side and two particular [[diagonal#Polygons|diagonals]] of the regular heptagon.<ref name=Altintas/>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)