Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hermite polynomials
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Recurrence relation=== The sequence of probabilist's Hermite polynomials also satisfies the [[recurrence relation]] <math display="block">\operatorname{He}_{n+1}(x) = x \operatorname{He}_n(x) - \operatorname{He}_n'(x).</math> Individual coefficients are related by the following recursion formula: <math display="block">a_{n+1,k} = \begin{cases} - (k+1) a_{n,k+1} & k = 0, \\ a_{n,k-1} - (k+1) a_{n,k+1} & k > 0, \end{cases}</math> and {{math|1=''a''<sub>0,0</sub> = 1}}, {{math|1=''a''<sub>1,0</sub> = 0}}, {{math|1=''a''<sub>1,1</sub> = 1}}. For the physicist's polynomials, assuming <math display="block">H_n(x) = \sum^n_{k=0} a_{n,k} x^k,</math> we have <math display="block">H_{n+1}(x) = 2xH_n(x) - H_n'(x).</math> Individual coefficients are related by the following recursion formula: <math display="block">a_{n+1,k} = \begin{cases} - a_{n,k+1} & k = 0, \\ 2 a_{n,k-1} - (k+1)a_{n,k+1} & k > 0, \end{cases}</math> and {{math|1=''a''<sub>0,0</sub> = 1}}, {{math|1=''a''<sub>1,0</sub> = 0}}, {{math|1=''a''<sub>1,1</sub> = 2}}. The Hermite polynomials constitute an [[Appell sequence]], i.e., they are a polynomial sequence satisfying the identity <math display="block">\begin{align} \operatorname{He}_n'(x) &= n\operatorname{He}_{n-1}(x), \\ H_n'(x) &= 2nH_{n-1}(x). \end{align}</math> An integral recurrence that is deduced and demonstrated in <ref>Hurtado Benavides, Miguel Ángel. (2020). De las sumas de potencias a las sucesiones de Appell y su caracterización a través de funcionales. [Tesis de maestría]. Universidad Sergio Arboleda.</ref> is as follows: <math display="block">\operatorname{He}_{n+1}(x) = (n+1)\int_0^x \operatorname{He}_n(t)dt - He'_n(0),</math> <math display="block">H_{n+1}(x) = 2(n+1)\int_0^x H_n(t)dt - H'_n(0).</math> Equivalently, by [[Taylor series|Taylor-expanding]], <math display="block">\begin{align} \operatorname{He}_n(x+y) &= \sum_{k=0}^n \binom{n}{k}x^{n-k} \operatorname{He}_{k}(y) &&= 2^{-\frac n 2} \sum_{k=0}^n \binom{n}{k} \operatorname{He}_{n-k}\left(x\sqrt 2\right) \operatorname{He}_k\left(y\sqrt 2\right), \\ H_n(x+y) &= \sum_{k=0}^n \binom{n}{k}H_{k}(x) (2y)^{n-k} &&= 2^{-\frac n 2}\cdot\sum_{k=0}^n \binom{n}{k} H_{n-k}\left(x\sqrt 2\right) H_k\left(y\sqrt 2\right). \end{align}</math> These [[umbral calculus|umbral]] identities are self-evident and [[#Generalizations|included]] in the [[#Differential-operator representation|differential operator representation]] detailed below, <math display="block">\begin{align} \operatorname{He}_n(x) &= e^{-\frac{D^2}{2}} x^n, \\ H_n(x) &= 2^n e^{-\frac{D^2}{4}} x^n. \end{align}</math> In consequence, for the {{mvar|m}}th derivatives the following relations hold: <math display="block">\begin{align} \operatorname{He}_n^{(m)}(x) &= \frac{n!}{(n-m)!} \operatorname{He}_{n-m}(x) &&= m! \binom{n}{m} \operatorname{He}_{n-m}(x), \\ H_n^{(m)}(x) &= 2^m \frac{n!}{(n-m)!} H_{n-m}(x) &&= 2^m m! \binom{n}{m} H_{n-m}(x). \end{align}</math> It follows that the Hermite polynomials also satisfy the [[recurrence relation]] <math display="block">\begin{align} \operatorname{He}_{n+1}(x) &= x\operatorname{He}_n(x) - n\operatorname{He}_{n-1}(x), \\ H_{n+1}(x) &= 2xH_n(x) - 2nH_{n-1}(x). \end{align}</math> These last relations, together with the initial polynomials {{math|''H''<sub>0</sub>(''x'')}} and {{math|''H''<sub>1</sub>(''x'')}}, can be used in practice to compute the polynomials quickly. [[Turán's inequalities]] are <math display="block">\mathit{H}_n(x)^2 - \mathit{H}_{n-1}(x) \mathit{H}_{n+1}(x) = (n-1)! \sum_{i=0}^{n-1} \frac{2^{n-i}}{i!}\mathit{H}_i(x)^2 > 0.</math> Moreover, the following [[multiplication theorem]] holds: <math display="block">\begin{align} H_n(\gamma x) &= \sum_{i=0}^{\left\lfloor \tfrac{n}{2} \right\rfloor} \gamma^{n-2i}(\gamma^2 - 1)^i \binom{n}{2i} \frac{(2i)!}{i!} H_{n-2i}(x), \\ \operatorname{He}_n(\gamma x) &= \sum_{i=0}^{\left\lfloor \tfrac{n}{2} \right\rfloor} \gamma^{n-2i}(\gamma^2 - 1)^i \binom{n}{2i} \frac{(2i)!}{i!}2^{-i} \operatorname{He}_{n-2i}(x). \end{align}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)