Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hessenberg matrix
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Householder transformations=== Any <math>n \times n</math> matrix can be transformed into a Hessenberg matrix by a similarity transformation using [[Householder transformation]]s. The following procedure for such a transformation is adapted from '''A Second Course In Linear Algebra''' by ''Garcia & Roger''.<ref>{{cite book |last1=Ramon Garcia |first1=Stephan |last2=Horn |first2=Roger |title=A Second Course In Linear Algebra |date=2017 |publisher=Cambridge University Press |isbn=9781107103818}}</ref> Let <math>A</math> be any real or complex <math>n \times n</math> matrix, then let <math>A^\prime</math> be the <math>(n - 1) \times n</math> submatrix of <math>A</math> constructed by removing the first row in <math>A</math> and let <math>\mathbf{a}^\prime_1</math> be the first column of <math>A'</math>. Construct the <math>(n-1) \times (n-1)</math> householder matrix <math>V_1 = I_{(n-1)} - 2\frac{ww^*}{\|w\|^2}</math> where <math display="block"> w = \begin{cases} \|\mathbf{a}^\prime_1\|_2\mathbf{e}_1 - \mathbf{a}^\prime_1 \;\;\;\;\;\;\;\; , \;\;\; a^\prime_{11} = 0 \\ \|\mathbf{a}^\prime_1\|_2\mathbf{e}_1 + \frac{\overline{a^\prime_{11}}}{|a^\prime_{11}|}\mathbf{a}^\prime_1 \;\;\; , \;\;\; a^\prime_{11} \neq 0 \\ \end{cases} </math> This householder matrix will map <math>\mathbf{a}^\prime_1</math> to <math>\|\mathbf{a}^\prime_1\| \mathbf{e}_1</math> and as such, the block matrix <math>U_1 = \begin{bmatrix}1 & \mathbf{0} \\ \mathbf{0} & V_1 \end{bmatrix}</math> will map the matrix <math>A</math> to the matrix <math>U_1A</math> which has only zeros below the second entry of the first column. Now construct <math>(n-2) \times (n-2)</math> householder matrix <math>V_2</math> in a similar manner as <math>V_1</math> such that <math>V_2</math> maps the first column of <math>A^{\prime\prime}</math> to <math>\|\mathbf{a}^{\prime\prime}_1\| \mathbf{e}_1</math>, where <math>A^{\prime\prime}</math> is the submatrix of <math>A^{\prime}</math> constructed by removing the first row and the first column of <math>A^{\prime}</math>, then let <math>U_2 = \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & V_2\end{bmatrix}</math> which maps <math>U_1A</math> to the matrix <math>U_2U_1A</math> which has only zeros below the first and second entry of the subdiagonal. Now construct <math>V_3</math> and then <math>U_3</math> in a similar manner, but for the matrix <math>A^{\prime\prime\prime}</math> constructed by removing the first row and first column of <math>A^{\prime\prime}</math> and proceed as in the previous steps. Continue like this for a total of <math>n-2</math> steps. By construction of <math>U_k</math>, the first <math>k</math> columns of any <math>n \times n</math> matrix are invariant under multiplication by <math>U_k^*</math> from the right. Hence, any matrix can be transformed to an upper Hessenberg matrix by a similarity transformation of the form <math>U_{(n-2)}( \dots (U_2(U_1 A U_1^*)U_2^*) \dots )U_{(n-2)}^* = U_{(n-2)} \dots U_2U_1A(U_{(n-2)} \dots U_2U_1)^* = UAU^*</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)