Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Heyting algebra
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Examples == [[File:Rieger-Nishimura.svg|thumb|right|280px|The [[free object|free]] Heyting algebra over one generator (aka Rieger–Nishimura lattice)]] <ul> <li> Every [[Boolean algebra (structure)|Boolean algebra]] is a Heyting algebra, with ''p''→''q'' given by ¬''p''∨''q''.</li> <li> Every [[total order|totally ordered set]] that has a least element 0 and a greatest element 1 is a Heyting algebra (if viewed as a lattice). In this case ''p''→''q'' equals to 1 when ''p≤q'', and ''q'' otherwise.</li> <li> The simplest Heyting algebra that is not already a Boolean algebra is the totally ordered set {0, {{sfrac|1|2}}, 1} (viewed as a lattice), yielding the operations: {| |-style="vertical-align:bottom" | <div> {| class="wikitable" |+ <math>a \land b</math> |- ! {{diagonal split header|''a''|''b''}} | bgcolor="white" width="30" align="center" | 0 | bgcolor="white" width="30" align="center" | {{sfrac|1|2}} | bgcolor="white" width="30" align="center" | 1 |- | bgcolor="white" align="center" | 0 | align="center" | 0 | align="center" | 0 | align="center" | 0 |- | bgcolor="white" align="center" | {{sfrac|1|2}} | align="center" | 0 | align="center" | {{sfrac|1|2}} | align="center" | {{sfrac|1|2}} |- | bgcolor="white" align="center" | 1 | align="center" | 0 | align="center" | {{sfrac|1|2}} | align="center" | 1 |} </div> | width="30" | | <div> {| class="wikitable" |+ <math>a \lor b</math> |- ! {{diagonal split header|''a''|''b''}} | bgcolor="white" width="30" align="center" | 0 | bgcolor="white" width="30" align="center" | {{sfrac|1|2}} | bgcolor="white" width="30" align="center" | 1 |- | bgcolor="white" align="center" | 0 | align="center" | 0 | align="center" | {{sfrac|1|2}} | align="center" | 1 |- | bgcolor="white" align="center" | {{sfrac|1|2}} | align="center" | {{sfrac|1|2}} | align="center" | {{sfrac|1|2}} | align="center" | 1 |- | bgcolor="white" align="center" | 1 | align="center" | 1 | align="center" | 1 | align="center" | 1 |} </div> | width="30" | | <div> {| class="wikitable" |+ {{nobold|{{math|''a''→''b''}}}} |- ! {{diagonal split header|''a''|''b''}} | bgcolor="white" width="30" align="center" | 0 | bgcolor="white" width="30" align="center" | {{sfrac|1|2}} | bgcolor="white" width="30" align="center" | 1 |- | bgcolor="white" align="center" | 0 | align="center" | 1 | align="center" | 1 | align="center" | 1 |- | bgcolor="white" align="center" | {{sfrac|1|2}} | align="center" | 0 | align="center" | 1 | align="center" | 1 |- | bgcolor="white" align="center" | 1 | align="center" | 0 | align="center" | {{sfrac|1|2}} | align="center" | 1 |} </div> | width="30" | | <div> {| class="wikitable" | width="50" align="center" | ''a'' | width="50" align="center" | ¬''a'' |- | bgcolor="white" align="center" | 0 | align="center" | 1 |- | bgcolor="white" align="center" | {{sfrac|1|2}} | align="center" | 0 |- | bgcolor="white" align="center" | 1 | align="center" | 0 |} </div> |} In this example, note that {{math|size=100%|1= {{sfrac|1|2}}∨¬{{sfrac|1|2}} = {{sfrac|1|2}}∨({{sfrac|1|2}} → 0) = {{sfrac|1|2}}∨0 = {{sfrac|1|2}}}} falsifies the law of excluded middle. <li> Every [[topology]] provides a complete Heyting algebra in the form of its [[open set]] lattice. In this case, the element ''A''→''B'' is the [[interior (topology)|interior]] of the union of ''A<sup>c</sup>'' and ''B'', where ''A<sup>c</sup>'' denotes the [[Complement (set theory)|complement]] of the [[open set]] ''A''. Not all complete Heyting algebras are of this form. These issues are studied in [[pointless topology]], where complete Heyting algebras are also called '''frames''' or '''locales'''. <li> Every [[interior algebra]] provides a Heyting algebra in the form of its lattice of open elements. Every Heyting algebra is of this form as a Heyting algebra can be completed to a Boolean algebra by taking its free Boolean extension as a bounded distributive lattice and then treating it as a [[generalized topology]] in this Boolean algebra. <li> The [[Lindenbaum algebra]] of propositional [[intuitionistic logic]] is a Heyting algebra.</li> <li> The [[global element]]s of the [[subobject classifier]] Ω of an [[elementary topos]] form a Heyting algebra; it is the Heyting algebra of [[truth value]]s of the intuitionistic higher-order logic induced by the topos. More generally, the set of [[Subobject|subobjects]] of any object ''X'' in a topos forms a Heyting algebra.</li> <li> [[Łukasiewicz–Moisil algebra]]s (LM<sub>''n''</sub>) are also Heyting algebras for any ''n''<ref>{{Cite journal | doi = 10.1007/s10516-005-4145-6| title = N-Valued Logics and Łukasiewicz–Moisil Algebras| journal = Axiomathes| volume = 16| pages = 123–136| year = 2006| last1 = Georgescu | first1 = G. | issue = 1–2| s2cid = 121264473}}, Theorem 3.6</ref> (but they are not [[MV-algebras]] for ''n'' ≥ 5<ref>Iorgulescu, A.: Connections between MV<sub>''n''</sub>-algebras and ''n''-valued Łukasiewicz–Moisil algebras—I. Discrete Math. 181, 155–177 (1998) {{doi|10.1016/S0012-365X(97)00052-6}}</ref>). </ul>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)