Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hyperbolic functions
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Characterizing properties== === Hyperbolic cosine === It can be shown that the [[area under the curve]] of the hyperbolic cosine (over a finite interval) is always equal to the [[arc length]] corresponding to that interval:<ref>{{cite book | title=Golden Integral Calculus | first1=Bali | last1=N.P. | publisher=Firewall Media | year=2005 | isbn=81-7008-169-6 | page=472 | url=https://books.google.com/books?id=hfi2bn2Ly4cC&pg=PA472}}</ref> <math display="block">\text{area} = \int_a^b \cosh x \,dx = \int_a^b \sqrt{1 + \left(\frac{d}{dx} \cosh x \right)^2} \,dx = \text{arc length.}</math> ===Hyperbolic tangent{{anchor|tanh}}=== The hyperbolic tangent is the (unique) solution to the [[differential equation]] {{math|1=''f'' β² = 1 β ''f'' <sup>2</sup>}}, with {{math|1=''f'' (0) = 0}}.<ref>{{cite book |title=Nonlinear Workbook, The: Chaos, Fractals, Cellular Automata, Neural Networks, Genetic Algorithms, Gene Expression Programming, Support Vector Machine, Wavelets, Hidden Markov Models, Fuzzy Logic With C++, Java And Symbolicc++ Programs |first=Willi-Hans |last= Steeb |edition= 3rd|publisher=World Scientific Publishing Company |year=2005 |isbn=978-981-310-648-2 |page=281 |url=https://books.google.com/books?id=-Qo8DQAAQBAJ}} [https://books.google.com/books?id=-Qo8DQAAQBAJ&pg=PA281 Extract of page 281 (using lambda=1)]</ref><ref>{{cite book |title=An Atlas of Functions: with Equator, the Atlas Function Calculator |first1=Keith B.|last1= Oldham |first2=Jan |last2=Myland |first3=Jerome |last3=Spanier |edition=2nd, illustrated |publisher=Springer Science & Business Media |year=2010 |isbn=978-0-387-48807-3 |page=290 |url=https://books.google.com/books?id=UrSnNeJW10YC}} [https://books.google.com/books?id=UrSnNeJW10YC&pg=PA290 Extract of page 290]</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)