Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Infinitesimal strain theory
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Volumetric strain=== <!-- anchor: [[Volumetric strain]] redirects here --> The '''volumetric strain''', also called '''bulk strain''', is the relative variation of the volume, as arising from ''[[dilation (physics)|dilation]]'' or ''compression''; it is the [[#Strain invariants|first strain invariant]] or [[trace (matrix)|trace]] of the tensor: <math display="block">\delta=\frac{\Delta V}{V_0} = I_1 = \varepsilon_{11} + \varepsilon_{22} + \varepsilon_{33}</math> Actually, if we consider a cube with an edge length ''a'', it is a quasi-cube after the deformation (the variations of the angles do not change the volume) with the dimensions <math>a \cdot (1 + \varepsilon_{11}) \times a \cdot (1 + \varepsilon_{22}) \times a \cdot (1 + \varepsilon_{33})</math> and ''V''<sub>0</sub> = ''a''<sup>3</sup>, thus <math display="block">\frac{\Delta V}{V_0} = \frac{\left ( 1 + \varepsilon_{11} + \varepsilon_{22} + \varepsilon_{33} + \varepsilon_{11} \cdot \varepsilon_{22} + \varepsilon_{11} \cdot \varepsilon_{33}+ \varepsilon_{22} \cdot \varepsilon_{33} + \varepsilon_{11} \cdot \varepsilon_{22} \cdot \varepsilon_{33} \right ) \cdot a^3 - a^3}{a^3}</math> as we consider small deformations, <math display="block">1 \gg \varepsilon_{ii} \gg \varepsilon_{ii} \cdot \varepsilon_{jj} \gg \varepsilon_{11} \cdot \varepsilon_{22} \cdot \varepsilon_{33} </math> therefore the formula. [[Image:Approximation volume deformation.png|class=skin-invert-image|400px|<small>Real variation of volume (top) and the approximated one (bottom): the green drawing shows the estimated volume and the orange drawing the neglected volume</small>]] In case of pure shear, we can see that there is no change of the volume.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)