Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Injective module
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Self-injectivity ==== An Artin local ring <math>(R, \mathfrak{m}, K)</math> is injective over itself if and only if <math>soc(R)</math> is a 1-dimensional vector space over <math>K</math>. This implies every local Gorenstein ring which is also Artin is injective over itself since has a 1-dimensional socle.<ref>{{Cite web|url=https://www.math.purdue.edu/~walther/snowbird/inj.pdf|title=Injective Modules|page=10}}</ref> A simple non-example is the ring <math>R = \mathbb{C}[x,y]/(x^2,xy,y^2)</math> which has maximal ideal <math>(x,y)</math> and residue field <math>\mathbb{C}</math>. Its socle is <math>\mathbb{C}\cdot x \oplus\mathbb{C}\cdot y</math>, which is 2-dimensional. The residue field has the injective hull <math>\text{Hom}_\mathbb{C}(\mathbb{C}\cdot x\oplus\mathbb{C}\cdot y, \mathbb{C})</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)