Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Jacobi elliptic functions
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Using modular inversion=== In fact, the definition of the Jacobi elliptic functions in Whittaker & Watson is stated a little bit differently than the one given above (but it's equivalent to it) and relies on modular inversion: [[Modular lambda function|The function]] <math>\lambda</math>, defined by [[File:The region F1 for modular inversion.jpg|thumb|The region <math>F_1</math> in the complex plane. It is bounded by two semicircles from below, by a ray from the left and by a ray from the right.]] :<math>\lambda (\tau)=\frac{\theta_2(\tau)^4}{\theta_3(\tau)^4},</math> assumes every value in <math>\mathbb{C}-\{0,1\}</math> ''once and only once''<ref>{{cite journal |last=Cox |first=David Archibald |authorlink1=David A. Cox |date=January 1984 |title=The Arithmetic-Geometric Mean of Gauss|url=https://www.researchgate.net/publication/248675540 |journal=L'Enseignement Mathématique|volume=30|issue=2|pages=290}}</ref> in :<math>F_1-(\partial F_1\cap\{\tau\in\mathbb{H}:\operatorname{Re}\tau <0\})</math> where <math>\mathbb{H}</math> is the upper half-plane in the complex plane, <math>\partial F_1</math> is the boundary of <math>F_1</math> and :<math>F_1=\{\tau\in\mathbb{H}:\left|\operatorname{Re}\tau\right|\le 1,\left|\operatorname{Re}(1/\tau)\right|\le 1\}.</math> In this way, each <math>m\,\overset{\text{def}}{=}\,\lambda (\tau)\in\mathbb{C}-\{0,1\}</math> can be associated with ''one and only one'' <math>\tau</math>. Then Whittaker & Watson define the Jacobi elliptic functions by :<math>\begin{align}\operatorname{sn}(u,m)&=\frac{\theta_3(\tau)\theta_1(\zeta |\tau)}{\theta_2(\tau)\theta_4(\zeta|\tau)},\\ \operatorname{cn}(u,m)&=\frac{\theta_4(\tau)\theta_2(\zeta |\tau)}{\theta_2(\tau)\theta_4(\zeta|\tau)},\\ \operatorname{dn}(u,m)&=\frac{\theta_4(\tau)\theta_3(\zeta |\tau)}{\theta_3(\tau)\theta_4(\zeta|\tau)}\end{align}</math> where <math>\zeta=u/\theta_3(\tau)^2</math>. In the book, they place an additional restriction on <math>m</math> (that <math>m\notin (-\infty,0)\cup (1,\infty)</math>), but it is in fact not a necessary restriction (see the Cox reference). Also, if <math>m=0</math> or <math>m=1</math>, the Jacobi elliptic functions degenerate to non-elliptic functions which is described below.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)