Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Jet bundle
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Example=== Consider the case ''(E, Ī, M)'', where ''E'' â '''R'''<sup>2</sup> and ''M'' â '''R'''. Then, ''(J<sup>1</sup>(Ī), Ī, M)'' defines the first jet bundle, and may be coordinated by ''(x, u, u<sub>1</sub>)'', where :<math>\begin{align} x\left(j^1_p\sigma\right) &= x(p) = x \\ u\left(j^1_p\sigma\right) &= u(\sigma(p)) = u(\sigma(x)) = \sigma(x) \\ u_1\left(j^1_p\sigma\right) &= \left.\frac{\partial \sigma}{\partial x}\right|_p = \sigma'(x) \end{align}</math> for all ''p'' â ''M'' and Ī in Î<sub>''p''</sub>(Ī). A general 1-form on ''J<sup>1</sup>(Ī)'' takes the form :<math>\theta = a(x, u, u_1)dx + b(x, u, u_1)du + c(x, u, u_1)du_1\,</math> A section Ī in Î<sub>''p''</sub>(Ī) has first prolongation :<math>j^1\sigma = (u, u_1) = \left(\sigma(p), \left. \frac{\partial \sigma}{\partial x} \right|_p \right).</math> Hence, ''(j<sup>1</sup>Ī)*θ'' can be calculated as :<math>\begin{align} \left(j^1_p\sigma\right)^* \theta &= \theta \circ j^1_p\sigma \\ &= a(x, \sigma(x), \sigma'(x))dx + b(x, \sigma(x), \sigma'(x))d(\sigma(x)) + c(x, \sigma(x),\sigma'(x))d(\sigma'(x)) \\ &= a(x, \sigma(x), \sigma'(x))dx + b(x, \sigma(x), \sigma'(x))\sigma'(x)dx + c(x, \sigma(x), \sigma'(x))\sigma''(x)dx \\ &= [a(x, \sigma(x), \sigma'(x)) + b(x, \sigma(x), \sigma'(x))\sigma'(x) + c(x, \sigma(x), \sigma'(x))\sigma''(x) ]dx \end{align}</math> This will vanish for all sections Ī if and only if ''c'' = 0 and ''a'' = â''bĪâ˛(x)''. Hence, θ = ''b(x, u, u<sub>1</sub>)θ<sub>0</sub>'' must necessarily be a multiple of the basic contact form θ<sub>0</sub> = ''du'' â ''u<sub>1</sub>dx''. Proceeding to the second jet space ''J<sup>2</sup>(Ī)'' with additional coordinate ''u<sub>2</sub>'', such that :<math>u_2(j^2_p\sigma) = \left.\frac{\partial^2 \sigma}{\partial x^2}\right|_p = \sigma''(x)\,</math> a general 1-form has the construction :<math>\theta = a(x, u, u_1,u_2)dx + b(x, u, u_1,u_2)du + c(x, u, u_1,u_2)du_1 + e(x, u, u_1,u_2)du_2\,</math> This is a contact form if and only if :<math>\begin{align} \left(j^2_p\sigma\right)^* \theta &= \theta \circ j^2_p\sigma \\ &= a(x, \sigma(x), \sigma'(x), \sigma''(x))dx + b(x, \sigma(x), \sigma'(x),\sigma''(x))d(\sigma(x)) +{} \\ &\qquad\qquad c(x, \sigma(x), \sigma'(x),\sigma''(x))d(\sigma'(x)) + e(x, \sigma(x), \sigma'(x),\sigma''(x))d(\sigma''(x)) \\ &= adx + b\sigma'(x)dx + c\sigma''(x)dx + e\sigma'''(x)dx \\ &= [a + b\sigma'(x) + c\sigma''(x) + e\sigma'''(x)]dx\\ &= 0 \end{align}</math> which implies that ''e'' = 0 and ''a'' = â''bĪâ˛(x)'' â ''cĪâ˛â˛(x)''. Therefore, θ is a contact form if and only if :<math>\theta = b(x, \sigma(x), \sigma'(x))\theta_{0} + c(x, \sigma(x), \sigma'(x))\theta_1,</math> where θ<sub>1</sub> = ''du''<sub>1</sub> â ''u''<sub>2</sub>''dx'' is the next basic contact form (Note that here we are identifying the form θ<sub>0</sub> with its pull-back <math>\left(\pi_{2,1}\right)^{*}\theta_{0}</math> to ''J<sup>2</sup>(Ī)''). In general, providing ''x, u'' â '''R''', a contact form on ''J<sup>r+1</sup>(Ī)'' can be written as a [[linear combination]] of the basic contact forms :<math>\theta_k = du_k - u_{k+1}dx \qquad k = 0, \ldots, r - 1\,</math> where :<math> u_k\left(j^k \sigma\right) = \left.\frac{\partial^k \sigma}{\partial x^k}\right|_p.</math> Similar arguments lead to a complete characterization of all contact forms. In local coordinates, every contact one-form on ''J<sup>r+1</sup>(Ī)'' can be written as a linear combination :<math>\theta = \sum_{|I|=0}^r P_\alpha^I \theta_I^\alpha</math> with smooth coefficients <math>P^\alpha_i(x^i, u^\alpha, u^\alpha_I)</math> of the basic contact forms :<math>\theta_I^\alpha = du^\alpha_I - u^\alpha_{I,i} dx^i\,</math> ''|I|'' is known as the '''order''' of the contact form <math>\theta_i^\alpha</math>. Note that contact forms on ''J<sup>r+1</sup>(Ī)'' have orders at most ''r''. Contact forms provide a characterization of those local sections of ''Ī<sub>r+1</sub>'' which are prolongations of sections of Ī. Let Ī â Î<sub>''W''</sub>(''Ī<sub>r+1</sub>''), then ''Ī'' = ''j<sup>r+1</sup>''Ī where Ī â Î<sub>''W''</sub>(Ī) if and only if <math>\psi^* (\theta|_{W}) = 0, \forall \theta \in \Lambda_C^1 \pi_{r+1,r}.\,</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)