Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Knuth–Bendix completion algorithm
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Examples=== ==== A terminating example ==== Consider the monoid: :<math> \langle x, y \mid x^3 = y^3 = (xy)^3 = 1 \rangle </math>. We use the [[shortlex order]]. This is an infinite monoid but nevertheless, the Knuth–Bendix algorithm is able to solve the word problem. Our beginning three reductions are therefore {{NumBlk|:|<math> x^3 \rightarrow 1 </math>|{{EquationRef|1}}}} {{NumBlk|:|<math> y^3 \rightarrow 1 </math>|{{EquationRef|2}}}} {{NumBlk|:|<math> (xy)^3 \rightarrow 1 </math>.|{{EquationRef|3}}}} A suffix of <math>x^3</math> (namely <math>x</math>) is a prefix of <math>(xy)^3=xyxyxy</math>, so consider the word <math> x^3yxyxy </math>. Reducing using ({{EquationNote|1}}), we get <math> yxyxy </math>. Reducing using ({{EquationNote|3}}), we get <math> x^2 </math>. Hence, we get <math> yxyxy = x^2 </math>, giving the reduction rule {{NumBlk|:|<math> yxyxy \rightarrow x^2 </math>.|{{EquationRef|4}}}} Similarly, using <math> xyxyxy^3 </math> and reducing using ({{EquationNote|2}}) and ({{EquationNote|3}}), we get <math> xyxyx = y^2 </math>. Hence the reduction {{NumBlk|:|<math> xyxyx \rightarrow y^2 </math>.|{{EquationRef|5}}}} Both of these rules obsolete ({{EquationNote|3}}), so we remove it. Next, consider <math> x^3yxyx </math> by overlapping ({{EquationNote|1}}) and ({{EquationNote|5}}). Reducing we get <math> yxyx = x^2y^2 </math>, so we add the rule {{NumBlk|:|<math> yxyx \rightarrow x^2y^2</math>.|{{EquationRef|6}}}} Considering <math> xyxyx^3 </math> by overlapping ({{EquationNote|1}}) and ({{EquationNote|5}}), we get <math> xyxy = y^2x^2 </math>, so we add the rule {{NumBlk|:|<math> y^2x^2 \rightarrow xyxy </math>.|{{EquationRef|7}}}} These obsolete rules ({{EquationNote|4}}) and ({{EquationNote|5}}), so we remove them. Now, we are left with the rewriting system {{NumBlk|:|<math> x^3 \rightarrow 1 </math>|({{EquationNote|1}})|RawN=.}} {{NumBlk|:|<math> y^3 \rightarrow 1 </math>|({{EquationNote|2}})|RawN=.}} {{NumBlk|:|<math> yxyx \rightarrow x^2y^2 </math>|({{EquationNote|6}})|RawN=.}} {{NumBlk|:|<math> y^2 x^2 \rightarrow xyxy </math>.|({{EquationNote|7}})|RawN=.}} Checking the overlaps of these rules, we find no potential failures of confluence. Therefore, we have a confluent rewriting system, and the algorithm terminates successfully. ==== A non-terminating example ==== The order of the generators may crucially affect whether the Knuth–Bendix completion terminates. As an example, consider the [[free Abelian group]] by the monoid presentation: : <math>\langle x, y, x^{-1}, y^{-1}\, |\, xy=yx, xx^{-1} = x^{-1}x = yy^{-1} = y^{-1}y = 1 \rangle .</math> The Knuth–Bendix completion with respect to lexicographic order <math>x < x^{-1} < y < y^ {-1}</math> finishes with a convergent system, however considering the length-lexicographic order <math>x < y < x^{-1} < y^{-1}</math> it does not finish for there are no finite convergent systems compatible with this latter order.<ref name="BogopolskiBumagin2011">{{cite book |editor=Oleg Bogopolski |editor2=Inna Bumagin |editor3=Olga Kharlampovich |editor4=Enric Ventura|title=Combinatorial and Geometric Group Theory: Dortmund and Ottawa-Montreal conferences|year=2011|publisher=Springer Science & Business Media|isbn=978-3-7643-9911-5|page=62|chapter=Geodesic Rewriting Systems and Pregroups|author=V. Diekert |author2=A.J. Duncan |author3=A.G. Myasnikov}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)