Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Laplacian matrix
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Left (random-walk) and right normalized Laplacians ==== The left (random-walk) normalized Laplacian matrix is defined as: : <math>L^\text{rw} := D^+L = I - D^+A,</math> where <math>D^+</math> is the [[Moore–Penrose inverse]]. The elements of <math display="inline">L^\text{rw}</math> are given by :<math>L^\text{rw}_{i,j} := \begin{cases} 1 & \mbox{if } i = j \mbox{ and } \deg(v_i) \neq 0\\ -\frac{1}{\deg(v_i)} & \mbox{if } i \neq j \mbox{ and } v_i \mbox{ is adjacent to } v_j \\ 0 & \mbox{otherwise}. \end{cases}</math> Similarly, the right normalized Laplacian matrix is defined as : <math>L D^+ = I - A D^+</math>. The left or right normalized Laplacian matrix is not symmetric if the adjacency matrix is symmetric, except for the trivial case of all isolated vertices. For example, {|class="wikitable" ! [[Adjacency matrix]] ! Degree matrix ! Left normalized Laplacian ! Right normalized Laplacian |- | <math display="inline">\left(\begin{array}{rrr} 0 & 1 & 0\\ 1 & 0 & 1\\ 0 & 1 & 0\\ \end{array}\right)</math> | <math display="inline">\left(\begin{array}{rrr} 1 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 1\\ \end{array}\right)</math> | <math display="inline">\left(\begin{array}{rrr} 1 & -1 & 0\\ -1/2 & 1 & -1/2\\ 0& -1 & 1\\ \end{array}\right)</math> | <math display="inline">\left(\begin{array}{rrr} 1 & -1/2 & 0\\ -1 & 1 & -1\\ 0& -1/2 & 1\\ \end{array}\right)</math> |} The example also demonstrates that if <math>G</math> has no isolated vertices, then <math>D^+A</math> [[Stochastic matrix|right stochastic]] and hence is the matrix of a [[random walk]], so that the left normalized Laplacian <math>L^\text{rw} := D^+L = I - D^+A</math> has each row summing to zero. Thus we sometimes alternatively call <math>L^\text{rw}</math> the [[random walk|random-walk]] normalized Laplacian. In the less uncommonly used right normalized Laplacian <math>L D^+ = I - A D^+</math> each column sums to zero since <math>A D^+</math> is [[Stochastic matrix|left stochastic]]. For a non-symmetric adjacency matrix of a directed graph, one also needs to choose [[degree (graph theory)|indegree or outdegree]] for normalization: {|class="wikitable" ! [[Adjacency matrix]] ! Out-Degree matrix ! Out-Degree left normalized Laplacian ! In-Degree matrix ! In-Degree right normalized Laplacian |- | <math display="inline">\left(\begin{array}{rrr} 0 & 1 & 1\\ 0 & 0 & 1\\ 1 & 0 & 0\\ \end{array}\right)</math> | <math display="inline">\left(\begin{array}{rrr} 2 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1\\ \end{array}\right)</math> | <math display="inline">\left(\begin{array}{rrr} 1 & -1/2 & -1/2\\ 0 & 1 & -1\\ -1 & 0 & 1\\ \end{array}\right)</math> | <math display="inline">\left(\begin{array}{rrr} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 2\\ \end{array}\right)</math> | <math display="inline">\left(\begin{array}{rrr} 1 & -1 & -1/2\\ 0 & 1 & -1/2\\ -1 & 0 & 1\\ \end{array}\right)</math> |} The left out-degree normalized Laplacian with row-sums all 0 relates to [[Stochastic matrix|right stochastic]] <math>D_{\text{out}}^+A</math> , while the right in-degree normalized Laplacian with column-sums all 0 contains [[Stochastic matrix|left stochastic]] <math>AD_{\text{in}}^+</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)