Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Linear independence
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== The zero vector === If one or more vectors from a given sequence of vectors <math>\mathbf{v}_1, \dots, \mathbf{v}_k</math> is the zero vector <math>\mathbf{0}</math> then the vectors <math>\mathbf{v}_1, \dots, \mathbf{v}_k</math> are necessarily linearly dependent (and consequently, they are not linearly independent). To see why, suppose that <math>i</math> is an index (i.e. an element of <math>\{ 1, \ldots, k \}</math>) such that <math>\mathbf{v}_i = \mathbf{0}.</math> Then let <math>a_{i} := 1</math> (alternatively, letting <math>a_{i}</math> be equal to any other non-zero scalar will also work) and then let all other scalars be <math>0</math> (explicitly, this means that for any index <math>j</math> other than <math>i</math> (i.e. for <math>j \neq i</math>), let <math>a_{j} := 0</math> so that consequently <math>a_{j} \mathbf{v}_j = 0 \mathbf{v}_j = \mathbf{0}</math>). Simplifying <math>a_1 \mathbf{v}_1 + \cdots + a_k\mathbf{v}_k</math> gives: :<math>a_1 \mathbf{v}_1 + \cdots + a_k\mathbf{v}_k = \mathbf{0} + \cdots + \mathbf{0} + a_i \mathbf{v}_i + \mathbf{0} + \cdots + \mathbf{0} = a_i \mathbf{v}_i = a_i \mathbf{0} = \mathbf{0}.</math> Because not all scalars are zero (in particular, <math>a_{i} \neq 0</math>), this proves that the vectors <math>\mathbf{v}_1, \dots, \mathbf{v}_k</math> are linearly dependent. As a consequence, the zero vector can not possibly belong to any collection of vectors that is linearly ''in''dependent. Now consider the special case where the sequence of <math>\mathbf{v}_1, \dots, \mathbf{v}_k</math> has length <math>1</math> (i.e. the case where <math>k = 1</math>). A collection of vectors that consists of exactly one vector is linearly dependent if and only if that vector is zero. Explicitly, if <math>\mathbf{v}_1</math> is any vector then the sequence <math>\mathbf{v}_1</math> (which is a sequence of length <math>1</math>) is linearly dependent if and only if {{nowrap|<math>\mathbf{v}_1 = \mathbf{0}</math>;}} alternatively, the collection <math>\mathbf{v}_1</math> is linearly independent if and only if <math>\mathbf{v}_1 \neq \mathbf{0}.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)