Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Lp space
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===General ℓ<sup>''p''</sup>-space=== In complete analogy to the preceding definition one can define the space <math>\ell^p(I)</math> over a general [[index set]] <math>I</math> (and <math>1 \leq p < \infty</math>) as <math display="block">\ell^p(I) = \left\{(x_i)_{i\in I} \in \mathbb{K}^I : \sum_{i \in I} |x_i|^p < +\infty\right\},</math> where convergence on the right means that only countably many summands are nonzero (see also [[Unconditional convergence]]). With the norm <math display="block">\|x\|_p = \left(\sum_{i\in I} |x_i|^p\right)^{1/p}</math> the space <math>\ell^p(I)</math> becomes a Banach space. In the case where <math>I</math> is finite with <math> n</math> elements, this construction yields <math>\Reals^n</math> with the <math>p</math>-norm defined above. If <math>I</math> is countably infinite, this is exactly the sequence space <math>\ell^p</math> defined above. For uncountable sets <math>I</math> this is a non-[[Separable space|separable]] Banach space which can be seen as the [[Locally convex topological vector space|locally convex]] [[direct limit]] of <math>\ell^p</math>-sequence spaces.<ref>Rafael Dahmen, Gábor Lukács: ''Long colimits of topological groups I: Continuous maps and homeomorphisms.'' in: ''Topology and its Applications'' Nr. 270, 2020. Example 2.14 </ref> For <math>p = 2,</math> the <math>\|\,\cdot\,\|_2</math>-norm is even induced by a canonical [[inner product]] <math>\langle \,\cdot,\,\cdot\rangle,</math> called the ''{{visible anchor|Euclidean inner product}}'', which means that <math>\|\mathbf{x}\|_2 = \sqrt{\langle\mathbf{x}, \mathbf{x}\rangle}</math> holds for all vectors <math>\mathbf{x}.</math> This inner product can expressed in terms of the norm by using the [[polarization identity]]. On <math>\ell^2,</math> it can be defined by <math display="block">\langle \left(x_i\right)_{i}, \left(y_n\right)_{i} \rangle_{\ell^2} ~=~ \sum_i x_i \overline{y_i}.</math> Now consider the case <math>p = \infty.</math> Define{{refn|group=note|The condition <math>\sup\operatorname{range} |x| < + \infty.</math> is not equivalent to <math>\sup\operatorname{range} |x|</math> being finite, unless <math>X \neq \varnothing.</math>}} <math display="block">\ell^\infty(I)=\{x\in \mathbb K^I : \sup\operatorname{range}|x|<+\infty\},</math> where for all <math>x</math><ref>{{cite book|last1=Garling|first1=D. J. H.|title=Inequalities: A Journey into Linear Analysis|date=2007|publisher=Cambridge University Press|isbn=978-0-521-87624-7|page=54}}</ref>{{refn|group=note|If <math>X = \varnothing</math> then <math>\sup\operatorname{range} |x| = - \infty.</math>}} <math display="block">\|x\|_\infty\equiv\inf\{C \in \Reals_{\geq 0}:|x_i| \leq C\text{ for all } i \in I\} = \begin{cases}\sup\operatorname{range}|x|&\text{if } X\neq\varnothing,\\0&\text{if } X=\varnothing.\end{cases}</math> The index set <math>I</math> can be turned into a [[measure space]] by giving it the [[Σ-algebra#Simple set-based examples|discrete σ-algebra]] and the [[counting measure]]. Then the space <math>\ell^p(I)</math> is just a special case of the more general <math>L^p</math>-space (defined below).
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)