Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Lumped-element model
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Newton's law of cooling ==== {{Main|Newton's law of cooling}} '''Newton's law of cooling''' is an empirical relationship attributed to English physicist [[Isaac Newton|Sir Isaac Newton]] (1642β1727). This law stated in non-mathematical form is the following: {{Quotation|The rate of heat loss of a body is proportional to the temperature difference between the body and its surroundings.}} Or, using symbols: <math display="block">\text {Rate of cooling} \sim \Delta T</math> An object at a different temperature from its surroundings will ultimately come to a common temperature with its surroundings. A relatively hot object cools as it warms its surroundings; a cool object is warmed by its surroundings. When considering how quickly (or slowly) something cools, we speak of its ''rate'' of cooling β how many degrees' change in temperature per unit of time. The rate of cooling of an object depends on how much hotter the object is than its surroundings. The temperature change per minute of a hot apple pie will be more if the pie is put in a cold freezer than if it is placed on the kitchen table. When the pie cools in the freezer, the temperature difference between it and its surroundings is greater. On a cold day, a warm home will leak heat to the outside at a greater rate when there is a large difference between the inside and outside temperatures. Keeping the inside of a home at high temperature on a cold day is thus more costly than keeping it at a lower temperature. If the temperature difference is kept small, the rate of cooling will be correspondingly low. As Newton's law of cooling states, the rate of cooling of an object β whether by [[thermal conduction|conduction]], [[Convection (heat transfer)|convection]], or [[thermal radiation|radiation]] β is approximately proportional to the temperature difference Ξ''T''. Frozen food will warm up faster in a warm room than in a cold room. Note that the rate of cooling experienced on a cold day can be increased by the added convection effect of the [[wind]]. This is referred to as [[wind chill]]. For example, a wind chill of -20 Β°C means that heat is being lost at the same rate as if the temperature were -20 Β°C without wind.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)