Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Material conditional
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==A selection of theorems (classical logic)== In [[classical logic]] material implication validates the following: <div style="margin-left: 20px;"> {{collapse top | title=<span style="display:block; text-align:left; margin-left: -50px; padding-left: 0;">Contraposition: <math>(\neg Q \to \neg P) \to (P \to Q)</math></span> | bg=#ffffff | fg=#000000 }} {| |1.{{spaces|1}} |[ (Q β β₯) β (P β β₯) ] |{{spaces|1}}// Assume (to discharge at 9) |- |2.{{spaces|1}} |[ P ] |{{spaces|1}}// Assume (to discharge at 8) |- |3.{{spaces|1}} |[ Q β β₯ ] |{{spaces|1}}// Assume (to discharge at 6)) |- |4.{{spaces|1}} |P β β₯ |{{spaces|1}}// <math>\to</math>E (1, 3) |- |5.{{spaces|1}} |β₯ |{{spaces|1}}// <math>\to</math>E (2, 4) |- |6.{{spaces|1}} |(Q β β₯) β β₯ |{{spaces|1}}// <math>\to</math>I (3, 5) (discharging 3) |- |7.{{spaces|1}} |Q |{{spaces|1}}// <math>\neg\neg</math>E (6) |- |8.{{spaces|1}} |P β Q |{{spaces|1}}// <math>\to</math>I (2, 7) (discharging 2) |- |9.{{spaces|1}} |((Q β β₯) β (P β β₯)) β (P β Q) |{{spaces|1}}// <math>\to</math>I (1, 8) (discharging 1) |} {{collapse bottom}} </div> <div style="margin-left: 20px;"> {{collapse top | title=<span style="display:block; text-align:left; margin-left: -50px; padding-left: 0;">[[Peirce's law]]: <math>((P \to Q) \to P) \to P</math></span> | bg=#ffffff | fg=#000000 }} {| |1.{{spaces|1}} |[ (P β Q) β P ] |{{spaces|1}}// Assume (to discharge at 11) |- |2.{{spaces|1}} |[ P β β₯ ] |{{spaces|1}}// Assume (to discharge at 9) |- |3.{{spaces|1}} |[ P ] |{{spaces|1}}// Assume (to discharge at 6) |- |4.{{spaces|1}} |β₯ |{{spaces|1}}// <math>\to</math>E (2, 3) |- |5.{{spaces|1}} |Q |{{spaces|1}}// <math>\bot</math>E (4) |- |6.{{spaces|1}} |P β Q |{{spaces|1}}// <math>\to</math>I (3, 5) (discharging 3) |- |7.{{spaces|1}} |P |{{spaces|1}}// <math>\to</math>E (1, 6) |- |8.{{spaces|1}} |β₯ |{{spaces|1}}// <math>\to</math>E (2, 7) |- |9.{{spaces|1}} |(P β β₯) β β₯ |{{spaces|1}}// <math>\to</math>I (2, 8) (discharging 2) |- |10.{{spaces|1}} |P |{{spaces|1}}// <math>\neg \neg</math>E (9) |- |11.{{spaces|1}} |((P β Q) β P) β P |{{spaces|1}}// <math>\to</math>I (1, 10) (discharging 1) |} {{collapse bottom}} </div> <div style="margin-left: 20px;"> {{collapse top | title=<span style="display:block; text-align:left; margin-left: -50px; padding-left: 0;">[[Vacuous truth|Vacuous conditional]] (IPC): <math>\neg P \to (P \to Q)</math></span> | bg=#ffffff | fg=#000000 }} {| |1.{{spaces|1}} |<math>[ P \to \bot ]</math> |{{spaces|1}}// Assume |- |2.{{spaces|1}} |<math>[ P ]</math> |{{spaces|1}}// Assume |- |3.{{spaces|1}} | <math>\bot</math> |{{spaces|1}}// <math>\to</math>E (1, 2) |- |4.{{spaces|1}} |<math>Q</math> |{{spaces|1}}// <math>\bot</math>E (3) |- |5.{{spaces|1}} |<math>P \to Q</math> |{{spaces|1}}// <math>\to </math>I (2, 4) (discharging 2) |- |6.{{spaces|1}} |<math>( P \to \bot ) \to ( P \to Q )</math> |{{spaces|1}}// <math>\to </math>I (1, 5) (discharging 1) |} {{collapse bottom}} </div> * [[Import-Export (logic)|Import-export]]: <math>P \to (Q \to R) \equiv (P \land Q) \to R</math> * Negated conditionals: <math>\neg(P \to Q) \equiv P \land \neg Q</math> * Or-and-if: <math>P \to Q \equiv \neg P \lor Q</math> * Commutativity of antecedents: <math>\big(P \to (Q \to R)\big) \equiv \big(Q \to (P \to R)\big)</math> * [[Left distributivity]]: <math>\big(R \to (P \to Q)\big) \equiv \big((R \to P) \to (R \to Q)\big)</math> Similarly, on classical interpretations of the other connectives, material implication validates the following [[Logical consequence#Semantic consequence|entailment]]s: * Antecedent strengthening: <math>P \to Q \models (P \land R) \to Q</math> * [[transitive relation|Transitivity]]: <math>(P \to Q) \land (Q \to R) \models P \to R</math> * [[Simplification of disjunctive antecedents]]: <math>(P \lor Q) \to R \models (P \to R) \land (Q \to R)</math> [[Tautology (logic)|Tautologies]] involving material implication include: * [[reflexive relation|Reflexivity]]: <math>\models P \to P</math> * [[connex relation|Totality]]: <math>\models (P \to Q) \lor (Q \to P)</math> * [[Law of excluded middle|Conditional excluded middle]]: <math>\models (P \to Q) \lor (P \to \neg Q)</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)