Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Meet-in-the-middle attack
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== MD-MITM algorithm === {{Unreferenced section|date=May 2015}} Compute the following: :; <math> \mathit{SubCipher}_1=\mathit{ENC}_{f_1}(k_{f_1},P)\qquad\forall k_{f_1} \in K </math> :: and save each <math>\mathit{SubCipher}_1</math> together with corresponding <math>k_{f_1}</math> in a set <math>H_1</math>. :; <math> \mathit{SubCipher}_{n+1}=\mathit{DEC}_{b_{n+1}}(k_{b_{n+1}},C) \qquad\forall k_{b_{n+1}} \in K </math> :: and save each <math>\mathit{SubCipher}_{n+1}</math> together with corresponding <math>k_{b_{n+1}}</math> in a set <math>H_{n+1}</math>. For each possible guess on the intermediate state <math>s_1</math> compute the following: :; <math> \mathit{SubCipher}_1=\mathit{DEC}_{b_1}(k_{b_1},s_1) \qquad\forall k_{b_1} \in K</math> :: and for each match between this <math> \mathit{SubCipher}_1 </math> and the set <math> H_1 </math>, save <math> k_{b_1} </math> and <math> k_{f_1} </math> in a new set <math> T_1 </math>. :; <math> \mathit{SubCipher}_2=\mathit{ENC}_{f_2}(k_{f_2},s_1) \qquad\forall k_{f_2} \in K </math>{{Verify source|reason=No way to verify this edit: <nowiki>{{diff|Meet-in-the-middle attack|661031004|659749736}}</nowiki> |date=May 2015}} :: and save each <math> \mathit{SubCipher}_2 </math> together with corresponding <math> k_{f_2} </math> in a set <math> H_2</math>. : For each possible guess on an intermediate state <math> s_2 </math> compute the following: :* <math> \mathit{SubCipher}_2=\mathit{DEC}_{b_2}(k_{b_2},s_2) \qquad\forall k_{b_2} \in K </math> :*: and for each match between this <math> \mathit{SubCipher}_2 </math> and the set <math> H_2 </math>, check also whether :*: it matches with <math> T_1 </math> and then save the combination of sub-keys together in a new set <math> T_2 </math>. :* For each possible guess on an intermediate state <math> s_n </math> compute the following: {{Ordered list|list_style=padding-left: 3em; |list_style_type=lower-alpha |<math> \mathit{SubCipher}_n=\mathit{DEC}_{b_n}(k_{b_n},s_n) \qquad\forall k_{b_n} \in K </math> and for each match between this <math> \mathit{SubCipher}_n </math> and the set <math>H_n</math>, check also whether it matches with <math> T_{n-1} </math>, save <math> k_{b_n} </math> and <math> k_{f_n} </math> in a new set <math> T_n </math>. |<math> \mathit{SubCipher}_{n+1}=\mathit{ENC}_{f_n+1}(k_{f_n+1},s_n) \qquad\forall k_{f_{n+1}} \in K</math> and for each match between this <math>\mathit{SubCipher}_{n+1}</math> and the set <math>H_{n+1}</math>, check also whether it matches with <math>T_n</math>. If this is the case then:" }} Use the found combination of sub-keys <math>(k_{f_1},k_{b_1},k_{f_2},k_{b_2}, ... ,k_{f_{n+1}},k_{b_{n+1}})</math> on another pair of plaintext/ciphertext to verify the correctness of the key. Note the nested element in the algorithm. The guess on every possible value on ''s<sub>j</sub>'' is done for each guess on the previous ''s''<sub>''j''-1</sub>. This make up an element of exponential complexity to overall time complexity of this MD-MITM attack.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)