Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Methanogen
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Methane production === Methanogens are known to produce methane from substrates such as H<sub>2</sub>/CO<sub>2</sub>, acetate, [[Formatotrophs|formate]], methanol and methylamines in a process called [[methanogenesis]].<ref name=":6">{{Cite journal|last=Blaut|first=M.|date=1994|title=Metabolism of methanogens|journal=Antonie van Leeuwenhoek|volume=66|issue=1–3|pages=187–208|issn=0003-6072|pmid=7747931|doi=10.1007/bf00871639|s2cid=23706408}}</ref> Different methanogenic reactions are catalyzed by unique sets of [[enzyme]]s and [[coenzymes]]. While reaction mechanism and energetics vary between one reaction and another, all of these reactions contribute to net positive energy production by creating ion [[concentration gradient]]s that are used to drive ATP synthesis.<ref>{{Cite journal|last1=Dybas|first1=M|last2=Konisky|first2=J|date=1992|title=Energy transduction in the methanogen Methanococcus voltae is based on a sodium current.|journal=J Bacteriol|volume=174 | issue = 17 |pages=5575–5583|doi=10.1128/jb.174.17.5575-5583.1992|pmid=1324904|pmc=206501}}</ref> The overall reaction for H<sub>2</sub>/CO<sub>2</sub> methanogenesis is: :<chem>CO2 + 4 H2 -> CH4 + 2 H2O</chem> (∆G˚' = -134 kJ/mol CH<sub>4</sub>) Well-studied organisms that produce methane via H<sub>2</sub>/CO<sub>2</sub> methanogenesis include ''Methanosarcina barkeri'', ''Methanobacterium thermoautotrophicum'', and ''Methanobacterium wolfei''.<ref>{{Cite journal|last1=Karrasch|first1=M.|last2=Börner|first2=G.|last3=Enssle|first3=M.|last4=Thauer|first4=R. K.|date=1990-12-12|title=The molybdoenzyme formylmethanofuran dehydrogenase from Methanosarcina barkeri contains a pterin cofactor|journal=European Journal of Biochemistry|volume=194|issue=2|pages=367–372|issn=0014-2956|pmid=2125267|doi=10.1111/j.1432-1033.1990.tb15627.x}}</ref><ref>{{Cite journal|last1=Börner|first1=G.|last2=Karrasch|first2=M.|last3=Thauer|first3=R. K.|date=1991-09-23|title=Molybdopterin adenine dinucleotide and molybdopterin hypoxanthine dinucleotide in formylmethanofuran dehydrogenase from Methanobacterium thermoautotrophicum (Marburg)|journal=FEBS Letters|volume=290|issue=1–2|pages=31–34|issn=0014-5793|pmid=1915887|doi=10.1016/0014-5793(91)81218-w|s2cid=24174561|doi-access=free|bibcode=1991FEBSL.290...31B }}</ref><ref>{{Cite journal|last1=Schmitz|first1=Ruth A.|last2=Albracht|first2=Simon P. J.|last3=Thauer|first3=Rudolf K.|date=1992-11-01|title=A molybdenum and a tungsten isoenzyme of formylmethanofuran dehydrogenase in the thermophilic archaeon Methanobacterium wolfei|journal=European Journal of Biochemistry|language=en|volume=209|issue=3|pages=1013–1018|doi=10.1111/j.1432-1033.1992.tb17376.x|pmid=1330558|issn=1432-1033|doi-access=free}}</ref> These organisms are typically found in anaerobic environments.<ref name=":6" /> In the earliest stage of H<sub>2</sub>/CO<sub>2</sub> methanogenesis, CO<sub>2</sub> binds to [[methanofuran]] (MF) and is reduced to formyl-MF. This [[endergonic]] reductive process (∆G˚'= +16 kJ/mol) is dependent on the availability of H<sub>2</sub> and is catalyzed by the enzyme formyl-MF dehydrogenase.<ref name=":6" /> :<chem>CO2 + H2 + MF -> HCO-MF + H2O</chem> The formyl constituent of formyl-MF is then transferred to the coenzyme [[tetrahydromethanopterin]] (H4MPT) and is catalyzed by a soluble enzyme known as [[formyltransferase]]. This results in the formation of formyl-H4MPT.<ref name=":6" /> :<chem>HCO-MF + H4MPT -> HCO-H4MPT + MF</chem> Formyl-H4MPT is subsequently reduced to methenyl-H4MPT. Methenyl-H4MPT then undergoes a one-step hydrolysis followed by a two-step reduction to methyl-H4MPT. The two-step reversible reduction is assisted by [[Coenzyme F420|coenzyme F<sub>420</sub>]] whose hydride acceptor spontaneously oxidizes.<ref name=":6" /> Once oxidized, F<sub>420</sub>'s electron supply is replenished by accepting electrons from H<sub>2</sub>. This step is catalyzed by methylene H4MPT dehydrogenase.<ref>{{Cite journal|last=Zirngibl|first=C|date=February 1990|title=N5,N10-Methylenetetrahydromethanopterin dehydrogenase from Methanobacterium thermoautotrophicum has hydrogenase activity|journal=Laboratorium Fir Mikrobiologie|volume=261 | issue = 1 |pages=112–116|doi=10.1016/0014-5793(90)80649-4|doi-access=free|bibcode=1990FEBSL.261..112Z}}</ref> :<chem>HCO-H4MPT + H+ -> CH-H4MPT+ + H2O</chem> (Formyl-H4MPT reduction) :<chem>CH-H4MPT+ + F420H2 -> CH2=H4MPT + F420 + H+</chem>(Methenyl-H4MPT hydrolysis) :<chem>CH2=H4MPT + H2 -> CH3-H4MPT + H+</chem>(H4MPT reduction) Next, the methyl group of methyl-M4MPT is transferred to coenzyme M via a methyltransferase-catalyzed reaction.<ref>{{Cite journal|last1=te Brömmelstroet|first1=B. W.|last2=Geerts|first2=W. J.|last3=Keltjens|first3=J. T.|last4=van der Drift|first4=C.|last5=Vogels|first5=G. D.|date=1991-09-20|title=Purification and properties of 5,10-methylenetetrahydromethanopterin dehydrogenase and 5,10-methylenetetrahydromethanopterin reductase, two coenzyme F420-dependent enzymes, from Methanosarcina barkeri|journal=Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology|volume=1079|issue=3|pages=293–302|issn=0006-3002|pmid=1911853|doi=10.1016/0167-4838(91)90072-8}}</ref><ref>{{Cite journal|last1=Kengen|first1=Servé W. M.|last2=Mosterd|first2=Judith J.|last3=Nelissen|first3=Rob L. H.|last4=Keltjens|first4=Jan T.|last5=Drift|first5=Chris van der|last6=Vogels|first6=Godfried D.|date=1988-08-01|title=Reductive activation of the methyl-tetrahydromethanopterin: coenzyme M methyltransferase from Methanobacterium thermoautotrophicum strain ΔH|journal=Archives of Microbiology|language=en|volume=150|issue=4|pages=405–412|doi=10.1007/BF00408315|bibcode=1988ArMic.150..405K |s2cid=36366503|issn=0302-8933}}</ref> :<chem>CH3-H4MPT + HS-CoM -> CH3-S-CoM + H4MPT</chem> The final step of H<sub>2</sub>/CO<sub>2</sub> methanogenesis involves [[methyl-coenzyme M reductase]] and two coenzymes: N-7 mercaptoheptanoylthreonine phosphate (HS-HTP) and coenzyme [[Cofactor F430|F<sub>430</sub>]]. HS-HTP donates electrons to methyl-coenzyme M allowing the formation of methane and mixed disulfide of HS-CoM.<ref>{{Cite journal|last1=Bobik|first1=T. A.|last2=Olson|first2=K. D.|last3=Noll|first3=K. M.|last4=Wolfe|first4=R. S.|date=1987-12-16|title=Evidence that the heterodisulfide of coenzyme M and 7-mercaptoheptanoylthreonine phosphate is a product of the methylreductase reaction in Methanobacterium|journal=Biochemical and Biophysical Research Communications|volume=149|issue=2|pages=455–460|issn=0006-291X|pmid=3122735|doi=10.1016/0006-291x(87)90389-5}}</ref> F<sub>430</sub>, on the other hand, serves as a prosthetic group to the reductase. H<sub>2</sub> donates electrons to the mixed disulfide of HS-CoM and regenerates coenzyme M.<ref>{{Cite journal|last1=Ellermann|first1=J.|last2=Hedderich|first2=R.|last3=Böcher|first3=R.|last4=Thauer|first4=R. K.|date=1988-03-15|title=The final step in methane formation. Investigations with highly purified methyl-CoM reductase (component C) from Methanobacterium thermoautotrophicum (strain Marburg)|journal=European Journal of Biochemistry|volume=172|issue=3|pages=669–677|issn=0014-2956|pmid=3350018|doi=10.1111/j.1432-1033.1988.tb13941.x|doi-access=free}}</ref> :<chem>CH3-S-CoM + HS-HTP -> CH4 + CoM-S-S-HTP</chem> (Formation of methane) :<chem>CoM-S-S-HTP + H2 -> HS-CoM + HS-HTP</chem> (Regeneration of coenzyme M) :
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)