Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Multivariate random variable
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Definitions=== The '''[[covariance matrix]]''' (also called '''second central moment''' or variance-covariance matrix) of an <math>n \times 1</math> random vector is an <math>n \times n</math> [[Matrix (mathematics)|matrix]] whose (''i,j'')<sup>th</sup> element is the [[covariance]] between the ''i''<sup> th</sup> and the ''j''<sup> th</sup> random variables. The covariance matrix is the expected value, element by element, of the <math>n \times n</math> matrix [[matrix multiplication|computed as]] <math>[\mathbf{X}-\operatorname{E}[\mathbf{X}]] [\mathbf{X}-\operatorname{E}[\mathbf{X}]]^T</math>, where the superscript T refers to the transpose of the indicated vector:<ref name=Lapidoth/>{{rp|p. 464}}<ref name=Gubner/>{{rp|p.335}} {{Equation box 1 |indent = |title= |equation = {{NumBlk||<math>\operatorname{K}_{\mathbf{X}\mathbf{X}} = \operatorname{Var}[\mathbf{X}]=\operatorname{E}[(\mathbf{X}-\operatorname{E}[\mathbf{X}])(\mathbf{X}-\operatorname{E}[\mathbf{X}])^{T}] = \operatorname{E}[\mathbf{X} \mathbf{X}^T] - \operatorname{E}[\mathbf{X}]\operatorname{E}[\mathbf{X}]^T</math>|{{EquationRef|Eq.3}}}} |cellpadding= 6 |border |border colour = #0073CF |background colour=#F5FFFA}} By extension, the '''[[cross-covariance matrix]]''' between two random vectors <math>\mathbf{X}</math> and <math>\mathbf{Y}</math> (<math>\mathbf{X}</math> having <math>n</math> elements and <math>\mathbf{Y}</math> having <math>p</math> elements) is the <math>n \times p</math> matrix<ref name=Gubner/>{{rp|p.336}} {{Equation box 1 |indent = |title= |equation = {{NumBlk||<math>\operatorname{K}_{\mathbf{X}\mathbf{Y}} = \operatorname{Cov}[\mathbf{X},\mathbf{Y}]=\operatorname{E}[(\mathbf{X}-\operatorname{E}[\mathbf{X}])(\mathbf{Y}-\operatorname{E}[\mathbf{Y}])^{T}] = \operatorname{E}[\mathbf{X} \mathbf{Y}^T] - \operatorname{E}[\mathbf{X}]\operatorname{E}[\mathbf{Y}]^T</math>|{{EquationRef|Eq.4}}}} |cellpadding= 6 |border |border colour = #0073CF |background colour=#F5FFFA}} where again the matrix expectation is taken element-by-element in the matrix. Here the (''i,j'')<sup>th</sup> element is the covariance between the ''i''<sup> th</sup> element of <math>\mathbf{X}</math> and the ''j''<sup> th</sup> element of <math>\mathbf{Y}</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)