Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Non-volatile random-access memory
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Researched Alternatives== ===Millipede memory=== {{Main|Millipede memory}} Perhaps one of the more innovative solutions is [[millipede memory]], developed by [[IBM]]. Millipede is, in essence, a [[punched card]] rendered using [[nanotechnology]] in order to dramatically increase areal density. Although it was planned to introduce Millipede as early as 2003, unexpected problems in development delayed this until 2005, by which point it was no longer competitive with flash. In theory the technology offers storage densities on the order of 1 Tbit/in<sup>2</sup> (β155 Gbit/cm<sup>2</sup>), greater than even the best [[hard drive]] technologies currently in use ([[perpendicular recording]] offers 636 Gbit/in<sup>2</sup> (β98.6 Gbit/cm<sup>2</sup>) as of Dec. 2011<ref name=636-gigabits>{{cite press release | url = http://www.hitachigst.com/press-room/2011/hitachi-gst-ships-one-terabyte-per-platter-hard-drives | title = Hitachi GST Ships One Terabyte Per Platter Hard Drives | access-date = 2011-12-17 | date = 2011-08-03 | publisher = [[Hitachi Global Storage Technologies]] | url-status = dead | archive-url = https://web.archive.org/web/20111026210519/http://www.hitachigst.com/press-room/2011/hitachi-gst-ships-one-terabyte-per-platter-hard-drives | archive-date = 2011-10-26}}</ref>), but future [[heat-assisted magnetic recording]] and [[patterned media]] together could support densities of 10 Tbit/in<sup>2</sup><ref name=10-terabits>{{cite web | url = https://arstechnica.com/science/news/2010/05/new-hard-drive-write-method-packs-in-one-terabyte-per-inch.ars | title = New hard drive write method packs in one terabit per inch | access-date = 2011-12-17 | last = Johnston | first = Casey | date = 2011-05-07 | website = Ars Technica}}</ref> (β1.55 Tbit/cm<sup>2</sup>). However, slow read and write times for memories this large seem to limit this technology to hard drive replacements as opposed to high-speed RAM-like uses, although to a very large degree the same is true of flash as well. ===FeFET memory=== {{main|FeFET memory}} An alternative application of (hafnium oxide based) [[ferroelectrics]] is [[Fe FET]] based memory, which utilises a ferroelectric between the gate and device of a [[field-effect transistor]]. Such devices are claimed to have the advantage that they utilise the same technology as [[HKMG]] (high-L metal gate) based lithography, and scale to the same size as a conventional FET at a given [[process node]]. As of 2017 32Mbit devices have been demonstrated at [[22 nm]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)