Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Normal basis
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Proof for the case of infinite fields == Suppose <math>K/F</math> is a finite Galois extension of the infinite field ''F''. Let {{nowrap|1=[''K'' : ''F''] = ''n''}}, <math>\text{Gal}(K/F) = G =\{\sigma_1...\sigma_n\}</math>, where <math>\sigma_1 = \text{Id}</math>. By the [[primitive element theorem]] there exists <math>\alpha \in K</math> such <math>i\ne j\implies \sigma_i(\alpha)\ne\sigma_j(\alpha)</math> and <math>K=F[\alpha]</math>. Let us write <math>\alpha_i = \sigma_i(\alpha)</math>. <math>\alpha</math>'s (monic) minimal polynomial ''f'' over ''K'' is the irreducible degree ''n'' polynomial given by the formula <math display="block">\begin {align} f(X) &= \prod_{i=1}^n(X - \alpha_i) \end {align}</math> Since ''f'' is separable (it has simple roots) we may define <math display="block"> \begin {align} g(X) &= \ \frac{f(X)}{(X-\alpha)f'(\alpha)}\\ g_i(X) &= \ \frac{f(X)}{(X-\alpha_i) f'(\alpha_i)} =\ \sigma_i(g(X)). \end {align} </math> In other words, <math display="block">\begin {align} g_i(X)&= \prod_{\begin {array}{c}1 \le j \le n \\ j\ne i\end {array}}\frac{X-\alpha_j}{\alpha_i - \alpha_j}\\ g(X)&= g_1(X). \end {align}</math> Note that <math>g(\alpha)=1</math> and <math>g_i(\alpha)=0</math> for <math>i \ne 1</math>. Next, define an <math>n \times n</math> matrix ''A'' of polynomials over ''K'' and a polynomial ''D'' by <math display="block"> \begin {align} A_{ij}(X) &= \sigma_i(\sigma_j(g(X)) = \sigma_i(g_j(X))\\ D(X) &= \det A(X). \end {align}</math> Observe that <math>A_{ij}(X) = g_k(X)</math>, where ''k'' is determined by <math>\sigma_k = \sigma_i \cdot \sigma_j</math>; in particular <math>k=1</math> iff <math>\sigma_i = \sigma_j^{-1}</math>. It follows that <math>A(\alpha)</math> is the permutation matrix corresponding to the permutation of ''G'' which sends each <math>\sigma_i</math> to <math>\sigma_i^{-1}</math>. (We denote by <math>A(\alpha)</math> the matrix obtained by evaluating <math>A(X)</math> at <math>x=\alpha</math>.) Therefore, <math>D(\alpha) = \det A(\alpha) = \pm 1</math>. We see that ''D'' is a non-zero polynomial, and therefore it has only a finite number of roots. Since we assumed ''F'' is infinite, we can find <math>a\in F</math> such that <math>D(a)\ne 0</math>. Define <math display="block"> \begin {align} \beta &= g(a) \\ \beta_i &= g_i(a) = \sigma_i(\beta). \end {align} </math> We claim that <math>\{\beta_1, \ldots, \beta_n\}</math> is a normal basis. We only have to show that <math>\beta_1, \ldots,\beta_n</math> are linearly independent over ''F'', so suppose <math display="inline">\sum_{j=1}^n x_j \beta_j = 0</math> for some <math>x_1...x_n\in F</math>. Applying the automorphism <math>\sigma_i</math> yields <math display="inline">\sum_{j=1}^n x_j \sigma_i(g_j(a)) = 0</math> for all ''i''. In other words, <math>A(a) \cdot \overline {x} = \overline {0}</math>. Since <math>\det A(a) = D(a) \ne 0</math>, we conclude that <math>\overline x = \overline 0</math>, which completes the proof. It is tempting to take <math>a=\alpha</math> because <math>D(\alpha)\neq0</math>. But this is impermissible because we used the fact that <math>a \in F</math> to conclude that for any ''F''-automorphism <math>\sigma</math> and polynomial <math>h(X)</math> over <math>K</math> the value of the polynomial <math>\sigma(h(X))</math> at ''a'' equals <math>\sigma(h(a))</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)