Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Normal order
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Bosonic operator functions=== Normal ordering of bosonic operator functions <math>f(\hat n)</math>, with occupation number operator <math>\hat n=\hat b\vphantom{\hat n}^\dagger \hat b</math>, can be accomplished using [[Factorial power|(falling) factorial powers]] <math>\hat n^{\underline{k}}=\hat n(\hat n-1)\cdots(\hat n-k+1)</math> and [[Newton series]] instead of [[Taylor series]]: It is easy to show <ref name="Hucht">{{cite journal | last1=König | first1=Jürgen | last2=Hucht | first2=Alfred | title=Newton series expansion of bosonic operator functions | journal=SciPost Physics | publisher=Stichting SciPost | volume=10 | issue=1 | date=2021-01-13 | issn=2542-4653 | doi=10.21468/scipostphys.10.1.007 | page=007| arxiv=2008.11139 | bibcode=2021ScPP...10....7K | s2cid=221293056 | doi-access=free }}</ref> that factorial powers <math>\hat n^{\underline{k}}</math> are equal to normal-ordered (raw) [[Exponentiation|powers]] <math>\hat n^{k}</math> and are therefore normal ordered by construction, : <math> \hat{n}^{\underline{k}} = \hat b\vphantom{\hat n}^{\dagger k} \hat b\vphantom{\hat n}^k = {:\,}\hat n^k{\,:}, </math> such that the Newton series expansion : <math> \tilde f(\hat n) = \sum_{k=0}^\infty \Delta_n^k \tilde f(0) \, \frac{\hat n^{\underline{k}}}{k!} </math> of an operator function <math>\tilde f(\hat n)</math>, with <math>k</math>-th [[forward difference]] <math>\Delta_n^k \tilde f(0)</math> at <math>n=0</math>, is always normal ordered. Here, the [[Second_quantization#Action_on_Fock_states|eigenvalue equation]] <math>\hat n |n\rangle = n |n\rangle</math> relates <math>\hat n</math> and <math>n</math>. As a consequence, the normal-ordered Taylor series of an arbitrary function <math>f(\hat n)</math> is equal to the Newton series of an associated function <math>\tilde f(\hat n)</math>, fulfilling : <math> \tilde f(\hat n) = {:\,} f(\hat n) {\,:}, </math> if the series coefficients of the Taylor series of <math>f(x)</math>, with continuous <math>x</math>, match the coefficients of the Newton series of <math>\tilde f(n)</math>, with integer <math>n</math>, : <math> \begin{align} f(x) &= \sum_{k=0}^\infty F_k \, \frac{x^k }{k!}, \\ \tilde f(n) &= \sum_{k=0}^\infty F_k \, \frac{n^{\underline{k}}}{k!}, \\ F_k &= \partial_x^k f(0) = \Delta_n^k \tilde f(0), \end{align} </math> with <math>k</math>-th [[partial derivative]] <math>\partial_x^k f(0)</math> at <math>x=0</math>. The functions <math>f</math> and <math>\tilde f</math> are related through the so-called '''[[normal-order transform]]''' <math>\mathcal N[f]</math> according to : <math> \begin{align} \tilde f(n) &= \mathcal N_x[f(x)](n) \\ &= \frac{1}{\Gamma(-n)} \int_{-\infty}^0 \mathrm d x \, e^x \, f(x) \, (-x)^{-(n+1)} \\ &= \frac{1}{\Gamma(-n)}\mathcal M_{-x}[e^{x} f(x)](-n), \end{align} </math> which can be expressed in terms of the [[Mellin transform]] <math>\mathcal M</math>, see <ref name="Hucht"/> for details.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)