Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Open and closed maps
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Properties== ===Open or closed maps that are continuous=== If <math>f : X \to Y</math> is a continuous map that is also open {{em|or}} closed then: * if <math>f</math> is a surjection then it is a [[quotient map (topology)|quotient map]] and even a [[hereditarily quotient map]], ** A surjective map <math>f : X \to Y</math> is called {{em|hereditarily quotient}} if for every subset <math>T \subseteq Y,</math> the restriction <math>f\big\vert_{f^{-1}(T)} ~:~ f^{-1}(T) \to T</math> is a quotient map. * if <math>f</math> is an [[Injective function|injection]] then it is a [[topological embedding]]. * if <math>f</math> is a [[bijection]] then it is a [[homeomorphism]]. In the first two cases, being open or closed is merely a [[sufficient condition]] for the conclusion that follows. In the third case, it is [[Necessary condition|necessary]] as well. ===Open continuous maps=== If <math>f : X \to Y</math> is a continuous (strongly) open map, <math>A \subseteq X,</math> and <math>S \subseteq Y,</math> then: <ul> <li><math>f^{-1}\left(\operatorname{Bd}_Y S\right) = \operatorname{Bd}_X \left(f^{-1}(S)\right)</math> where <math>\operatorname{Bd}</math> denotes the [[Boundary (topology)|boundary]] of a set.</li> <li><math>f^{-1}\left(\overline{S}\right) = \overline{f^{-1}(S)}</math> where <math>\overline{S}</math> denote the [[Closure (topology)|closure]] of a set.</li> <li>If <math>\overline{A} = \overline{\operatorname{Int}_X A},</math> where <math>\operatorname{Int} </math> denotes the [[Interior (topology)|interior]] of a set, then <math display="block">\overline{\operatorname{Int}_Y f(A)} = \overline{f(A)} = \overline{f\left(\operatorname{Int}_X A\right)} = \overline{f \left(\overline{\operatorname{Int}_X A}\right)}</math> where this set <math>\overline{f(A)}</math> is also necessarily a [[regular closed set]] (in <math>Y</math>).<ref group=note name="DefOfRegularOpenClosed" /> In particular, if <math>A</math> is a regular closed set then so is <math>\overline{f(A)}.</math> And if <math>A</math> is a [[regular open set]] then so is <math>Y \setminus \overline{f(X \setminus A)}.</math> </li> <li>If the continuous open map <math>f : X \to Y</math> is also surjective then <math>\operatorname{Int}_X f^{-1}(S) = f^{-1}\left(\operatorname{Int}_Y S\right)</math> and moreover, <math>S</math> is a regular open (resp. a regular closed)<ref group=note name="DefOfRegularOpenClosed" /> subset of <math>Y</math> if and only if <math>f^{-1}(S)</math> is a regular open (resp. a regular closed) subset of <math>X.</math> </li> <li>If a [[Net (mathematics)|net]] <math>y_{\bull} = \left(y_i\right)_{i \in I}</math> [[Convergent net|converges]] in <math>Y</math> to a point <math>y \in Y</math> and if the continuous open map <math>f : X \to Y</math> is surjective, then for any <math>x \in f^{-1}(y)</math> there exists a net <math>x_{\bull} = \left(x_a\right)_{a \in A}</math> in <math>X</math> (indexed by some [[directed set]] <math>A</math>) such that <math>x_{\bull} \to x</math> in <math>X</math> and <math>f\left(x_{\bull}\right) := \left(f\left(x_a\right)\right)_{a \in A}</math> is a [[Subnet (mathematics)|subnet]] of <math>y_{\bull}.</math> Moreover, the indexing set <math>A</math> may be taken to be <math>A := I \times \mathcal{N}_x</math> with the [[product order]] where <math>\mathcal{N}_x</math> is any [[neighbourhood basis]] of <math>x</math> directed by <math>\,\supseteq.\,</math><ref group=note>Explicitly, for any <math>a := (i, U) \in A := I \times \mathcal{N}_x,</math> pick any <math>h_a \in I</math> such that <math>i \leq h_a \text{ and } y_{h_a} \in f(U)</math> and then let <math>x_a \in U \cap f^{-1}\left(y_{h_a}\right)</math> be arbitrary. The assignment <math>a \mapsto h_a</math> defines an [[order morphism]] <math>h : A \to I</math> such that <math>h(A)</math> is a [[cofinal subset]] of <math>I;</math> thus <math>f\left(x_{\bull}\right)</math> is a [[Willard-subnet]] of <math>y_{\bull}.</math></ref></li> </ul>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)