Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Operator (physics)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Linear operators in wave mechanics=== {{Main|Wave function|Bra–ket notation}} Let {{math|''ψ''}} be the wavefunction for a quantum system, and <math>\hat{A}</math> be any [[linear operator]] for some observable {{math|''A''}} (such as position, momentum, energy, angular momentum etc.). If {{math|''ψ''}} is an eigenfunction of the operator <math>\hat{A}</math>, then :<math>\hat{A} \psi = a \psi ,</math> where {{math|''a''}} is the [[Eigenvalues and eigenvectors|eigenvalue]] of the operator, corresponding to the measured value of the observable, i.e. observable {{math|''A''}} has a measured value {{math|''a''}}. If {{math|''ψ''}} is an eigenfunction of a given operator <math>\hat{A}</math>, then a definite quantity (the eigenvalue {{math|''a''}}) will be observed if a measurement of the observable {{math|''A''}} is made on the state {{math|''ψ''}}. Conversely, if {{math|''ψ''}} is not an eigenfunction of <math>\hat{A}</math>, then it has no eigenvalue for <math>\hat{A}</math>, and the observable does not have a single definite value in that case. Instead, measurements of the observable {{math|''A''}} will yield each eigenvalue with a certain probability (related to the decomposition of {{math|''ψ''}} relative to the orthonormal eigenbasis of <math>\hat{A}</math>). In bra–ket notation the above can be written; :<math>\begin{align} \hat{A} \psi &= \hat{A} \psi ( \mathbf{r} ) = \hat{A} \left\langle \mathbf{r} \mid \psi \right\rangle = \left\langle \mathbf{r} \left\vert \hat {A} \right\vert \psi \right\rangle \\ a \psi &= a \psi ( \mathbf{r} ) = a \left\langle \mathbf{r} \mid \psi \right\rangle = \left\langle \mathbf{r} \mid a \mid \psi \right\rangle \\ \end{align} </math> that are equal if <math> \left| \psi \right\rangle </math> is an [[eigenvector]], or [[eigenket]] of the observable {{math|''A''}}. Due to linearity, vectors can be defined in any number of dimensions, as each component of the vector acts on the function separately. One mathematical example is the [[del operator]], which is itself a vector (useful in momentum-related quantum operators, in the table below). An operator in ''n''-dimensional space can be written: :<math> \mathbf{\hat{A}} = \sum_{j=1}^n \mathbf{e}_j \hat{A}_j </math> where '''e'''<sub>''j''</sub> are basis vectors corresponding to each component operator ''A<sub>j</sub>''. Each component will yield a corresponding eigenvalue <math>a_j</math>. Acting this on the wave function {{math|''ψ''}}: :<math> \mathbf{\hat{A}} \psi = \left( \sum_{j=1}^n \mathbf{e}_j \hat{A}_j \right) \psi = \sum_{j=1}^n \left( \mathbf{e}_j \hat{A}_j \psi \right) = \sum_{j=1}^n \left( \mathbf{e}_j a_j \psi \right) </math> in which we have used <math> \hat{A}_j \psi = a_j \psi .</math> In bra–ket notation: :<math>\begin{align} \mathbf{\hat{A}} \psi = \mathbf{\hat{A}} \psi ( \mathbf{r} ) = \mathbf{\hat{A}} \left\langle \mathbf{r} \mid \psi \right\rangle &= \left\langle \mathbf{r} \left\vert \mathbf{\hat{A}} \right\vert \psi \right\rangle \\ \left ( \sum_{j=1}^n \mathbf{e}_j \hat{A}_j \right ) \psi = \left( \sum_{j=1}^n \mathbf{e}_j \hat{A}_j \right) \psi ( \mathbf{r} ) = \left( \sum_{j=1}^n \mathbf{e}_j \hat{A}_j \right) \left\langle \mathbf{r} \mid \psi \right\rangle &= \left\langle \mathbf{r} \left\vert \sum_{j=1}^n \mathbf{e}_j \hat{A}_j \right\vert \psi \right\rangle \end{align}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)